www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Laplacetrans. & Grenzwert
Laplacetrans. & Grenzwert < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplacetrans. & Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:20 Mi 01.03.2006
Autor: kruder

Aufgabe
Bestimmen Sie mit Hilfe der Definitionsgleichung der Laplace-Transformation die Bildfunktion der folgenden Orginalfunktion: f(t)=cos(w*t)

Als erstes habe ich die Grundform aufgestellt:

L{cos(w*t)}= [mm] \integral_{0}^{\infty}{f(t)*e^{-s*t} dt} [/mm]

Diese dann integriert und faktorisiert:

[mm] [\bruch{(-s*cos(w*t)+a*sin(w*t))*e^{-s*t}}{s^{2}+w^{2}}]^{\infty}_{0} [/mm]

daraus ergibt sich dann:

[mm] \limes_{t\rightarrow\infty} \{\bruch{s}{s^{2}+w^{2}}-\bruch{e^{-s*t}(s*cos(w*t)+w*sin(w*t))}{s^{2}+w^{2}} \} [/mm]

unklar ist mir wie ich den Grenzwert bilde so das dieser Null wird.

Vielen Dank für die Beantwortung!
Gruß Kruder

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Laplacetrans. & Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 16:35 Mi 01.03.2006
Autor: Herby

Hallo Kruder,

und herzlich [willkommenmr]


> Bestimmen Sie mit Hilfe der Definitionsgleichung der
> Laplace-Transformation die Bildfunktion der folgenden
> Orginalfunktion: f(t)=cos(w*t)
>  Als erstes habe ich die Grundform aufgestellt:
>  
> L{cos(w*t)}= [mm]\integral_{0}^{\infty}{f(t)*e^{-s*t} dt}[/mm]
>  
> Diese dann integriert und faktorisiert:
>  
> [mm][\bruch{(-s*cos(w*t)+a*sin(w*t))*e^{-s*t}}{s^{2}+w^{2}}]^{\infty}_{0}[/mm]
>  
> daraus ergibt sich dann:
>  
> [mm]\limes_{t\rightarrow\infty} \{\bruch{s}{s^{2}+w^{2}}-\bruch{e^{-s*t}(s*cos(w*t)+w*sin(w*t))}{s^{2}+w^{2}} \}[/mm]
>  

im Zähler findest du ein kleines [mm] e^{-st} [/mm] was gleichbedeutend ist mit [mm] \bruch{1}{e^{st}}. [/mm]

Geht t gegen [mm] \infty, [/mm] dann ist [mm] \bruch{1}{\infty}=0 [/mm] und der ganze Term weg :-)


Aber warum denn zuerst die Untergrenze??? Könnte zu Vorzeichenproblemen führen.


Liebe Grüße
Herby

Bezug
                
Bezug
Laplacetrans. & Grenzwert: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:34 Mi 01.03.2006
Autor: kruder

Hallo Herby,

vielen Dank für den Tipp, hat mir sehr geholfen!

MfG
kruder

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]