Laplace-Gleichung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Use separation of variables $u(x,y) = P(x)Q(y)$ to solve the [mm] \textit{anisotropic 2D Laplace Equation} [/mm] for $u(x,y)$
[mm] $$\frac{\partial^2u}{\partial x^2} [/mm] + [mm] \alpha^2 \frac{\partial^2 u}{\partial y^2} [/mm] = 0$$
on the region $0 < x < 1$ and $0 < y < 1$, assuming [mm] $\alpha [/mm] > 0$ is constant and subject to $u=0$ on all boundaries except for $u(x,1) = [mm] \sin(4\pi [/mm] x)$ |
hi
ich habe mich jetzt mit der Aufgabe beschäftigt und würde gerne wissen, ob das, was ich bisher gemacht habe, überhaupt stimmt.
[mm] $$\frac{\partial^2u}{\partial x^2} [/mm] + [mm] \alpha^2 \frac{\partial^2 u}{\partial y^2} [/mm] = 0$$
[mm] $\Rightarrow [/mm] P''(x)Q(y) = [mm] -\alpha^2 \cdot P(x)Q''(y)$\\
[/mm]
[mm] $\Leftrightarrow \frac{P''(x)}{P(x)} [/mm] = [mm] -\alpha^2 \frac{Q''(y)}{Q(y)} [/mm] = [mm] -\alpha^2 \cdot k^2$
[/mm]
[mm] $\frac{P''(x)}{P(x)} [/mm] = [mm] -\alpha^2k^2 \Rightarrow [/mm] P'' + [mm] (\alpha^2k^2)P [/mm] = 0$
Auxiliary [mm] Equation:\\
[/mm]
[mm] $m^2 [/mm] + [mm] \alpha^2k^2 [/mm] = 0 [mm] \Rightarrow m^2 [/mm] = [mm] i^2 \alpha^2 k^2 \Rightarrow [/mm] m = [mm] \pm i\alpha [/mm] k$
$$P(x) = [mm] A\cos(\alpha [/mm] kx) + [mm] B\sin(\alpha [/mm] kx)$$
[mm] $\frac{Q''(y)}{Q(y)} [/mm] = [mm] k^2 \Rightarrow [/mm] Q'' - k^2Q = 0$
Auxiliary [mm] Equation:\\
[/mm]
[mm] $m^2 [/mm] - [mm] k^2 [/mm] = 0 [mm] \Rightarrow [/mm] (m+k)(m-k) = 0 [mm] \Rightarrow [/mm] m = [mm] \pm [/mm] k$
$$Q(y) = [mm] C\cosh(ky) [/mm] + [mm] D\sinh(ky)$$
[/mm]
Apply Boundary Conditions:
$u(0,y) = u(1,y) = 0 [mm] \Rightarrow [/mm] P(0) = P(1) = [mm] 0$\\
[/mm]
$P(0) = A [mm] \cdot [/mm] 1 + B [mm] \cdot [/mm] 0 = A [mm] \Rightarrow [/mm] A = [mm] 0$\\
[/mm]
$P(1) = [mm] B\sin(\alpha [/mm] k) = 0 [mm] \Rightarrow \sin(\alpha [/mm] k) = 0 [mm] \Rightarrow [/mm] k = [mm] \frac{n \pi}{\alpha}, [/mm] n [mm] \in \mathbb{N}$
[/mm]
[mm] $$\Rightarrow [/mm] u(x, y) = P(x)Q(y) = [mm] (C\cosh(ky) [/mm] + [mm] D\sinh(ky)) \cdot \sin(\frac{n \pi x}{\alpha})$$
[/mm]
$u(x, 0) = [mm] 0$\\
[/mm]
$Q(0) = C [mm] \cdot [/mm] 1 + D [mm] \cdot [/mm] 0 = C [mm] \Rightarrow [/mm] C = 0$
[mm] $$\Rightarrow [/mm] u(x, y) = P(x)Q(y) = [mm] D\sinh(\frac{n \pi y}{\alpha}) \cdot \sin(\frac{n \pi x}{\alpha})$$
[/mm]
wie gesagt, mir geht es nur darum, ob das bis hierhin richtig ist - theoretisch weiß ich wies weitergeht, benötige also keine weiteren Tipps sondern "nur" eine Korrektur meiner bisherigen Rechnung.
Vielen Dank
Gruß GB
|
|
|
|
Hallo GreatBritain,
> Use separation of variables [mm]u(x,y) = P(x)Q(y)[/mm] to solve the
> [mm]\textit{anisotropic 2D Laplace Equation}[/mm] for [mm]u(x,y)[/mm]
> [mm]\frac{\partial^2u}{\partial x^2} + \alpha^2 \frac{\partial^2 u}{\partial y^2} = 0[/mm]
>
> on the region [mm]0 < x < 1[/mm] and [mm]0 < y < 1[/mm], assuming [mm]\alpha > 0[/mm]
> is constant and subject to [mm]u=0[/mm] on all boundaries except for
> [mm]u(x,1) = \sin(4\pi x)[/mm]
> hi
> ich habe mich jetzt mit der Aufgabe beschäftigt und
> würde gerne wissen, ob das, was ich bisher gemacht habe,
> überhaupt stimmt.
>
>
> [mm]\frac{\partial^2u}{\partial x^2} + \alpha^2 \frac{\partial^2 u}{\partial y^2} = 0[/mm]
>
> [mm]\Rightarrow P''(x)Q(y) = -\alpha^2 \cdot P(x)Q''(y)[/mm][mm] \\[/mm]
>
> [mm]\Leftrightarrow \frac{P''(x)}{P(x)} = -\alpha^2 \frac{Q''(y)}{Q(y)} = -\alpha^2 \cdot k^2[/mm]
>
> [mm]\frac{P''(x)}{P(x)} = -\alpha^2k^2 \Rightarrow P'' + (\alpha^2k^2)P = 0[/mm]
>
> Auxiliary [mm]Equation:\\[/mm]
> [mm]m^2 + \alpha^2k^2 = 0 \Rightarrow m^2 = i^2 \alpha^2 k^2 \Rightarrow m = \pm i\alpha k[/mm]
>
> [mm]P(x) = A\cos(\alpha kx) + B\sin(\alpha kx)[/mm]
>
> [mm]\frac{Q''(y)}{Q(y)} = k^2 \Rightarrow Q'' - k^2Q = 0[/mm]
>
> Auxiliary [mm]Equation:\\[/mm]
> [mm]m^2 - k^2 = 0 \Rightarrow (m+k)(m-k) = 0 \Rightarrow m = \pm k[/mm]
>
> [mm]Q(y) = C\cosh(ky) + D\sinh(ky)[/mm]
>
> Apply Boundary Conditions:
>
> [mm]u(0,y) = u(1,y) = 0 \Rightarrow P(0) = P(1) = 0[/mm][mm] \\[/mm]
> [mm]P(0) = A \cdot 1 + B \cdot 0 = A \Rightarrow A = 0[/mm][mm] \\[/mm]
>
> [mm]P(1) = B\sin(\alpha k) = 0 \Rightarrow \sin(\alpha k) = 0 \Rightarrow k = \frac{n \pi}{\alpha}, n \in \mathbb{N}[/mm]
>
> [mm]\Rightarrow u(x, y) = P(x)Q(y) = (C\cosh(ky) + D\sinh(ky)) \cdot \sin(\frac{n \pi x}{\alpha})[/mm]
>
>
Hier muß es heißen:
[mm]\Rightarrow u(x, y) = P(x)Q(y) = (C\cosh(ky) + D\sinh(ky)) \cdot \sin(\red{n \pi} x)[/mm]
> [mm]u(x, 0) = 0[/mm][mm] \\[/mm]
> [mm]Q(0) = C \cdot 1 + D \cdot 0 = C \Rightarrow C = 0[/mm]
>
> [mm]\Rightarrow u(x, y) = P(x)Q(y) = D\sinh(\frac{n \pi y}{\alpha}) \cdot \sin(\frac{n \pi x}{\alpha})[/mm]
>
Hier analog:
[mm]\Rightarrow u(x, y) = P(x)Q(y) = D\sinh(\frac{n \pi y}{\alpha}) \cdot \sin(n \pi x)[/mm]
>
> wie gesagt, mir geht es nur darum, ob das bis hierhin
> richtig ist - theoretisch weiß ich wies weitergeht,
> benötige also keine weiteren Tipps sondern "nur" eine
> Korrektur meiner bisherigen Rechnung.
>
> Vielen Dank
> Gruß GB
>
>
Gruss
MathePower
|
|
|
|
|
ah ja, natürlich - super, vielen Dank!!! da hätte ich noch so oft drüber schauen können, das wäre mir nicht aufgefallen. aber klar, wenn ichs einsetze, kürzt sich das [mm] $\alpha$ [/mm] raus
Gruß GB
|
|
|
|
|
ok, also mit Mathepower's Verbesserung weiter im Programm:
Find $D$ such that
$$u(x,y) = [mm] \sum_{n=1}^\infty [/mm] D [mm] \cdot \sinh(\frac{n \pi y}{\alpha}) \cdot \sin(n \pi [/mm] x)$$
satisfies $u(x,1) = f(x) = [mm] \sin(4 \pi [/mm] x)$
[mm] $$\Rightarrow [/mm] u(x,1) = [mm] \sum_{n=1}^\infty \underbrace{D \cdot \sinh ( \frac{n \pi}{\alpha})}_{= d_n} \cdot \sin(n \pi [/mm] x) = [mm] \sin(4 \pi [/mm] x)$$
using $f(x) = [mm] \sin(4 \pi [/mm] x)$ as a Fourier Series:
$$f(x) &= [mm] \sum_{n=1}^\infty d_n \cdot \sin(n \pi k)~\text{with}~d_n [/mm] = D [mm] \cdot \sinh [/mm] ( [mm] \frac{n \pi}{\alpha}) [/mm] = [mm] \frac{2}{1} \int_0^1 [/mm] f(x) [mm] \cdot \sin(\frac{n \pi x}{1})= [/mm] 2 [mm] \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x) ~dx$$
Ist das bis hierhin richtig? Dann müsste ich jetzt doch noch [mm] $d_n$ [/mm] berechnen, was mit Hilfe Partieller Integration funktionieren sollte.
Danke & Gruß, GB
|
|
|
|
|
Hallo GreatBritain,
> ok, also mit Mathepower's Verbesserung weiter im Programm:
> Find [mm]D[/mm] such that
> [mm]u(x,y) = \sum_{n=1}^\infty D \cdot \sinh(\frac{n \pi y}{\alpha}) \cdot \sin(n \pi x)[/mm]
> satisfies [mm]u(x,1) = f(x) = \sin(4 \pi x)[/mm]
>
> [mm]\Rightarrow u(x,1) = \sum_{n=1}^\infty \underbrace{D \cdot \sinh ( \frac{n \pi}{\alpha})}_{= d_n} \cdot \sin(n \pi x) = \sin(4 \pi x)[/mm]
>
> using [mm]f(x) = \sin(4 \pi x)[/mm] as a Fourier Series:
>
> [mm]f(x) &= \sum_{n=1}^\infty d_n \cdot \sin(n \pi k)~\text{with}~d_n = D \cdot \sinh ( \frac{n \pi}{\alpha}) = \frac{2}{1} \int_0^1 f(x) \cdot \sin(\frac{n \pi x}{1})= 2 \int_0^1 \sin(4 \pi x) \cdot \sin(n \pi x) ~dx[/mm]
>
> Ist das bis hierhin richtig? Dann müsste ich jetzt doch
> noch [mm]d_n[/mm] berechnen, was mit Hilfe Partieller Integration
> funktionieren sollte.
Ja, das ist bis hierhin richtig.
>
> Danke & Gruß, GB
Gruss
MathePower
|
|
|
|
|
Bei der partiellen Integration bekomme ich raus, dass das Integral =0 ist - was vermutlich keinen Sinn macht...?
[mm] $\Rightarrow$ [/mm] Calculating $2 [mm] \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x) ~dx$ (Integration by Parts):
$u = [mm] \sin(4 \pi [/mm] x) [mm] \Rightarrow [/mm] u' = [mm] \sin(4 \pi [/mm] x) [mm] \cdot [/mm] 4 [mm] \pi; \quad v=-\frac{1}{n\pi}\cdot \cos(n \pi [/mm] x) [mm] \Rightarrow [/mm] v' = [mm] \sin(n \pi [/mm] x)$
$$2 [mm] \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x) ~dx = [mm] -\frac{1}{n\pi} \underbrace{\Big[\cos(n \pi x) \cdot \sin(4 \pi x)\Big]_0^1}_{=0} [/mm] + [mm] \frac{4}{n} \int_0^1 \cos(4 \pi [/mm] x) [mm] \cdot \cos(n \pi [/mm] x)~dx $$
$w = [mm] \cos(4 \pi [/mm] x) [mm] \Rightarrow [/mm] w' = [mm] -\sin(4 \pi [/mm] x) [mm] \cdot 4\pi; \quad [/mm] z = [mm] \frac{1}{n\pi} \sin(n\pi [/mm] x) [mm] \Rightarrow [/mm] z' = [mm] \cos(n \pi [/mm] x)$
[mm] $$\Rightarrow [/mm] 2 [mm] \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x) ~dx = [mm] \frac{4}{n^2 \pi} \underbrace{\Big[\sin(n \pi x) \cdot \cos(4 \pi x) \Big]_0^1}_{=0} [/mm] + [mm] \frac{16}{n^2} \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x)~dx$$
Damit hätte ich:
[mm] $$(2-\frac{16}{n^2}) \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x)~dx = 0$$
Ich vermute das ist falsch...
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 03:02 So 13.12.2009 | Autor: | rainerS |
Hallo!
> Bei der partiellen Integration bekomme ich raus, dass das
> Integral =0 ist - was vermutlich keinen Sinn macht...?
Doch schon, es ist nämlich 0 für [mm] $n\not=4$.
[/mm]
>
> [mm]\Rightarrow[/mm] Calculating [mm]2 \int_0^1 \sin(4 \pi x) \cdot \sin(n \pi x) ~dx[/mm]
> (Integration by Parts):
>
> [mm]u = \sin(4 \pi x) \Rightarrow u' = \sin(4 \pi x) \cdot 4 \pi; \quad v=-\frac{1}{n\pi}\cdot \cos(n \pi x) \Rightarrow v' = \sin(n \pi x)[/mm]
>
> [mm]2 \int_0^1 \sin(4 \pi x) \cdot \sin(n \pi x) ~dx = -\frac{1}{n\pi} \underbrace{\Big[\cos(n \pi x) \cdot \sin(4 \pi x)\Big]_0^1}_{=0} + \frac{4}{n} \int_0^1 \cos(4 \pi x) \cdot \cos(n \pi x)~dx[/mm]
Hier hast du rechts den Faktor $2$ vergessen:
[mm]2 \int_0^1 \sin(4 \pi x) \cdot \sin(n \pi x) ~dx = -\frac{\red{2}}{n\pi} \underbrace{\Big[\cos(n \pi x) \cdot \sin(4 \pi x)\Big]_0^1}_{=0} + \frac{\red{8}}{n} \int_0^1 \cos(4 \pi x) \cdot \cos(n \pi x)~dx[/mm]
>
> [mm]w = \cos(4 \pi x) \Rightarrow w' = -\sin(4 \pi x) \cdot 4\pi; \quad z = \frac{1}{n\pi} \sin(n\pi x) \Rightarrow z' = \cos(n \pi x)[/mm]
>
> [mm]\Rightarrow 2 \int_0^1 \sin(4 \pi x) \cdot \sin(n \pi x) ~dx = \frac{4}{n^2 \pi} \underbrace{\Big[\sin(n \pi x) \cdot \cos(4 \pi x) \Big]_0^1}_{=0} + \frac{16}{n^2} \int_0^1 \sin(4 \pi x) \cdot \sin(n \pi x)~dx[/mm]
Ebenso:
[mm]\Rightarrow 2 \int_0^1 \sin(4 \pi x) \cdot \sin(n \pi x) ~dx = \frac{\red{8}}{n^2 \pi} \underbrace{\Big[\sin(n \pi x) \cdot \cos(4 \pi x) \Big]_0^1}_{=0} + \frac{\red{32}}{n^2} \int_0^1 \sin(4 \pi x) \cdot \sin(n \pi x)~dx[/mm]
>
> Damit hätte ich:
> [mm](2-\frac{16}{n^2}) \int_0^1 \sin(4 \pi x) \cdot \sin(n \pi x)~dx = 0[/mm]
Korrekt: [mm](1-\frac{16}{n^2}) \int_0^1 \sin(4 \pi x) \cdot \sin(n \pi x)~dx = 0[/mm]
Für $n=4$ ersetzt du besser nach der 1. partiellen Integration [mm] $\cos^2(4\pi [/mm] x) = 1 - [mm] \sin^2(4\pi [/mm] x)$.
Viele Grüße
Rainer
|
|
|
|
|
Vielen Dank! Ich habe meine Rechnung verbessert, und weiter gemacht. Korrektur also erst ab $n [mm] \ne [/mm] 4$ nötig
Find $D$ such that $$u(x,y) = [mm] \sum_{n=1}^\infty [/mm] D [mm] \cdot \sinh(\frac{n \pi y}{\alpha}) \cdot \sin(n \pi [/mm] x)$$ satisfies $u(x,1) = f(x) = [mm] \sin(4 \pi [/mm] x)$
[mm] $$\Rightarrow [/mm] u(x,1) = [mm] \sum_{n=1}^\infty \underbrace{D \cdot \sinh ( \frac{n \pi}{\alpha})}_{= d_n} \cdot \sin(n \pi [/mm] x) = [mm] \sin(4 \pi [/mm] x)$$
using $f(x) = [mm] \sin(4 \pi [/mm] x)$ as a Fourier Series:
$$ f(x) = [mm] \sum_{n=1}^\infty d_n \cdot \sin(n \pi k)~\text{with}~d_n [/mm] = D [mm] \cdot \sinh [/mm] ( [mm] \frac{n \pi}{\alpha}) [/mm] = [mm] \frac{2}{1} \int_0^1 [/mm] f(x) [mm] \cdot \sin(\frac{n \pi x}{1})= [/mm] 2 [mm] \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x) ~dx
[mm] $\Rightarrow$ [/mm] Calculating [mm] $d_n [/mm] = 2 [mm] \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x) ~dx$ (Integration by Parts):
$u = [mm] \sin(4 \pi [/mm] x) [mm] \Rightarrow [/mm] u' = [mm] \sin(4 \pi [/mm] x) [mm] \cdot [/mm] 4 [mm] \pi; \quad v=-\frac{1}{n\pi}\cdot \cos(n \pi [/mm] x) [mm] \Rightarrow [/mm] v' = [mm] \sin(n \pi [/mm] x)$
$$2 [mm] \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x) ~dx = [mm] -\frac{2}{n\pi} \underbrace{\Big[\cos(n \pi x) \cdot \sin(4 \pi x)\Big]_0^1}_{=0} [/mm] + [mm] \frac{8}{n} \int_0^1 \cos(4 \pi [/mm] x) [mm] \cdot \cos(n \pi [/mm] x)~dx $$
$w = [mm] \cos(4 \pi [/mm] x) [mm] \Rightarrow [/mm] w' = [mm] -\sin(4 \pi [/mm] x) [mm] \cdot 4\pi; \quad [/mm] z = [mm] \frac{1}{n\pi} \sin(n\pi [/mm] x) [mm] \Rightarrow [/mm] z' = [mm] \cos(n \pi [/mm] x)$
[mm] $$\Rightarrow [/mm] 2 [mm] \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x) ~dx = [mm] \frac{8}{n^2 \pi} \underbrace{\Big[\sin(n \pi x) \cdot \cos(4 \pi x) \Big]_0^1}_{=0} [/mm] + [mm] \frac{32}{n^2} \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x)~dx$$
Hence
$$2 [mm] \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x) ~dx = [mm] \frac{32}{n^2} \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x)~dx$$
[mm] $$\Rightarrow [/mm] (1 - [mm] \frac{16}{n^2}) \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x) ~dx = 0$$
NEU
$n [mm] \ne [/mm] 4$:
[mm] $$\Rightarrow d_n [/mm] = 2 [mm] \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x) ~dx = 0$$
$n=4$:
$2 [mm] \int_0^1 \sin^2(4 \pi [/mm] x) ~dx = 2 [mm] \int_0^1 \cos^2(4\pi [/mm] x)~ dx = 2 [mm] \int_0^1 \big(1-\sin^2(4\pi x)\big)~dx [/mm] =2 [mm] \int_0^1 [/mm] 1~dx - [mm] 2\int_0^1 \sin^2(4\pi [/mm] x)~dx$
[mm] $\Rightarrow [/mm] 4 [mm] \int_0^1 \sin^2(4\pi [/mm] x)~dx = 2 [mm] \int_0^1 [/mm] 1~dx = 2 [mm] \Big[x\Big]_0^1 [/mm] = 2$
[mm] $$\Rightarrow d_4 [/mm] = 2 [mm] \int_0^1 \sin^2(4\pi [/mm] x) = 1$$
This means that
[mm] $$d_4 [/mm] = D [mm] \cdot \sinh(\frac{4\pi}{\alpha}) [/mm] = [mm] 1\Rightarrow [/mm] D = [mm] \frac{1}{\sinh(\frac{4\pi}{\alpha})}$$
[/mm]
$$u(x,y) = [mm] \sum_{n=1}^\infty \frac{\sinh(\frac{n \pi y}{\alpha})}{\sinh(\frac{4\pi}{\alpha})} \cdot \sin(n \pi [/mm] x)$$
Stimmt das? Und dann bin ich doch fertig - oder?
Vielen lieben Dank! Gruß GB
|
|
|
|
|
> Du hast doch ausgerechnet, dass alle [mm]d_n[/mm] außer [mm]d_4[/mm]
> verschwinden, also kann da keine Summe stehen:
ja, das ist in der tat logisch...
>
> [mm]u(x,y) = \frac{\sinh(\frac{n \pi y}{\alpha})}{\sinh(\frac{4\pi}{\alpha})} \cdot \sin(n \pi x)[/mm]
>
hier kann ich doch jetzt auch gleich noch jedes n durch eine 4 ersetzen - oder seh ich das falsch?
also [mm]u(x,y) = \frac{\sinh(\frac{4 \pi y}{\alpha})}{\sinh(\frac{4\pi}{\alpha})} \cdot \sin(4 \pi x)[/mm]
> Mach die Probe: Rechne nach, ob DGL und Randbedingungen
> erfüllt sind!
>
Das müsste meiner Meinung nach jetzt alles stimmen.
> Viele Grüße
> Rainer
Vielen Dank für deine Hilfe!!
Gruß GB
|
|
|
|