www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Lagrange minimaler Abstand
Lagrange minimaler Abstand < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrange minimaler Abstand: Frage zur Übung
Status: (Frage) beantwortet Status 
Datum: 16:00 So 24.03.2013
Autor: florettmann

Aufgabe
Bestimme mit der Methode von Lagrange ein geeignetes Gleichungssystem, und den minimalen Abstand der beiden Flächen zueinander und die beiden Punkten auf den Flächen mit minimalen Abstand. Geben Sie an, um wie viele Gleichungen und um wie viele Unbekannte es sich handelt. Die Flächen lauten: F: [mm] z=x^2+y^2 [/mm] und [mm] G:(x-2)^2+(y-3)^2+(z+4)^2=1 [/mm]

Hallo, weiss nicht genau wie Anfangen und bei den Anfangsbedingungen bin ich sehr unsicher Wäre sehr froh um eine Hilfe!! Danke und Gruss Thomas

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Lagrange minimaler Abstand: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 So 24.03.2013
Autor: MathePower

Hallo florettmann,

[willkommenmr]


> Bestimme mit der Methode von Lagrange ein geeignetes
> Gleichungssystem, und den minimalen Abstand der beiden
> Flächen zueinander und die beiden Punkten auf den Flächen
> mit minimalen Abstand. Geben Sie an, um wie viele
> Gleichungen und um wie viele Unbekannte es sich handelt.
> Die Flächen lauten: F: [mm]z=x^2+y^2[/mm] und
> [mm]G:(x-2)^2+(y-3)^2+(z+4)^2=1[/mm]
>  Hallo, weiss nicht genau wie Anfangen und bei den
> Anfangsbedingungen bin ich sehr unsicher Wäre sehr froh um


Anfangsbedingungen gibt es hier keine.

Wähle einen Punkt [mm]P_{1}\in F[/mm] und einen Punkt [mm]P_{2} \in G[/mm]
(das sind die Nebenbedingungen) und minimiere dann [mm]\vmat{P_{1}-P_{2}}^{2}[/mm]

Die Punkte müssen verschidene Variablen haben.

[mm]P_{1[/mm] z.B. [mm]\pmat{x \\ y \\ z}[/mm]
[mm]P_{2[/mm] z.B. [mm]\pmat{u \\ v \\ w}[/mm]

Dann hast Du nach Lagrange ein Gleichungssystem
mit 8 Gleichungen und 8 Variablen zu lösen.


> eine Hilfe!! Danke und Gruss Thomas
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]