www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Navigation
 Startseite...
 Suchen
 Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - LU- Zerlegung
LU- Zerlegung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LU- Zerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:11 Di 29.05.2012
Autor: mathemaus2010

Aufgabe
Bestimmen Sie eine LU - Zerlegung der Matrix

A = [mm] \pmat{ 1 & 2 & 3 & 0 \\ 4 & 0 & 0 & 1 \\ 5 & 0 & 6 & 0 \\ 0 & 1 & 0 & 1 } \in R^{4,4} [/mm] .

Hallo liebes Forum,

ich hoffe ihr könnt mir helfen, da ich den Fehler nicht sehe. Ich mache das mal so, wie ich das verstanden habe:

[mm] \pmat{ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 } [/mm] und [mm] \pmat{ 1 & 2 & 3 & 0 \\ 4 & 0 & 0 & 1 \\ 5 & 0 & 6 & 0 \\ 0 & 1 & 0 & 1 } [/mm]


---> [mm] G_{1,2}(-4) [/mm]

[mm] \pmat{ 1 & 0 & 0 & 0 \\ -4 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 } [/mm] und [mm] \pmat{ 1 & 2 & 3 & 0 \\ 0 & -8 & -12 & 1 \\ 5 & 0 & 6 & 0 \\ 0 & 1 & 0 & 1 } [/mm]


[mm] --->G_{1,3}(-5) [/mm]

[mm] \pmat{ 1 & 0 & 0 & 0 \\ -4 & 1 & 0 & 0 \\ -5 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 } [/mm] und [mm] \pmat{ 1 & 2 & 3 & 0 \\ 0 & -8 & -12 & 1 \\ 0 & -10 & -9 & 0 \\ 0 & 1 & 0 & 1 } [/mm]


---> [mm] M_{2}(-1/4) [/mm]


[mm] \pmat{ 1 & 0 & 0 & 0 \\ 1 & -1/4 & 0 & 0 \\ -5 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 } [/mm] und [mm] \pmat{ 1 & 2 & 3 & 0 \\ 0 & 2 & 3 & -1/4 \\ 0 & -10 & -9 & 0 \\ 0 & 1 & 0 & 1 } [/mm]

---> [mm] G_{2,3}(5) [/mm]

[mm] \pmat{ 1 & 0 & 0 & 0 \\ 1 & -1/4 & 0 & 0 \\ 0 & -5/4 & 1 & 0 \\ 0 & 0 & 0 & 1 } [/mm] und [mm] \pmat{ 1 & 2 & 3 & 0 \\ 0 & 2 & 3 & -1/4 \\ 0 & 0 & 6 & -5/4 \\ 0 & 1 & 0 & 1 } [/mm]

---> [mm] G_{2,4}(-1/2) [/mm]

[mm] \pmat{ 1 & 0 & 0 & 0 \\ 1 & -1/4 & 0 & 0 \\ 0 & -5/4 & 1 & 0 \\ -1/2 & 1/8 & 0 & 1 } [/mm] und [mm] \pmat{ 1 & 2 & 3 & 0 \\ 0 & 2 & 3 & -1/4 \\ 0 & 0 & 6 & -5/4 \\ 0 & 0 & -3/2 & 9/8 } [/mm]

---> [mm] G_{3,4}(1/4) [/mm]

[mm] \pmat{ 1 & 0 & 0 & 0 \\ 1 & -1/4 & 0 & 0 \\ 0 & -5/4 & 1 & 0 \\ -1/2 & -3/16 & 1/4 & 1 } [/mm] und [mm] \pmat{ 1 & 2 & 3 & 0 \\ 0 & 2 & 3 & -1/4 \\ 0 & 0 & 6 & -5/4 \\ 0 & 0 & 0 & 13/16 } [/mm]

Jetzt müsste ja eigentlich

L =  [mm] \pmat{ 1 & 0 & 0 & 0 \\ 1 & -1/4 & 0 & 0 \\ 0 & -5/4 & 1 & 0 \\ -1/2 & -3/16 & 1/4 & 1 } [/mm]  und

U =  [mm] \pmat{ 1 & 2 & 3 & 0 \\ 0 & 2 & 3 & -1/4 \\ 0 & 0 & 6 & -5/4 \\ 0 & 0 & 0 & 13/16 } [/mm]  sein, aber wenn ich L*U berechne, dann kommt

[mm] \pmat{ 1 & 2 & 3 & 0 \\ 1 & 1/2 & 9/4 & 0,06 \\ 0 & -5/2 & 9/4 & -0,94 \\ -1/2 & -1,37 & -0,56 & 0,55 } [/mm] heraus und dies hat ja nun wenig mit A zu tun.

Das ist mein Problem, dass ich einfach nicht A heraus bekomme, wobei ich meiner Ansicht nach alles richtig mache. Also wo ist der Fehler?

Liebe Grüße

Mathemaus


Ich habe diese Frage in keinem anderen Forum oder auf anderen Internetseiten gestellt.

        
Bezug
LU- Zerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:21 Di 29.05.2012
Autor: mathemaus2010

Naja gut ich habe noch vergessen, dass L auf der Diagonalen ausschließlich einsen haben muss, dann mache ich halt noch eine weitere Umformung :

---> [mm] M_{2}(-4) [/mm]

[mm] \pmat{ 1 & 0 & 0 & 0 \\ -4 & 1 & 0 & 0 \\ 0 & -5/4 & 1 & 0 \\ -1/2 & -3/16 & 1/4 & 1 } [/mm] und
[mm] \pmat{ 1 & 2 & 3 & 0 \\ 0 & -8 & -12 & 1 \\ 0 & 0 & 6 & -5/4 \\ 0 & 0 & 0 & 13/16 } [/mm]

aber auch wenn ich jetzt beide multipliziere, kommt  

[mm] \pmat{ 1 & 2 & 3 & 0 \\ -4 & -16 & -24 & 1 \\ 0 & 10 & 21 & -2,5 \\ -0,5 & 0,5 & 2,25 & 0,31 } [/mm] und das hat ja auch nichts mit A gemein =( .

Bezug
        
Bezug
LU- Zerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:57 Di 29.05.2012
Autor: wieschoo

Hi

Multiplizier mal schon nach dem ersten Schritt beide Matrizen.
Und schau dort mal nach dem Vorzeichen.

wieschoo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]