www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Kurze Frage zur Verteilung
Kurze Frage zur Verteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurze Frage zur Verteilung: Tipp, Hilfe
Status: (Frage) beantwortet Status 
Datum: 16:08 So 04.07.2010
Autor: kegel53

Aufgabe
Sei [mm] X\sim{N(\mu=0,\sigma=1)}. [/mm]
Ist dann [mm] 2X\sim{N(\mu=0,\sigma=4)}? [/mm]

Mahlzeit,
also ich weiß normalerweise wie ich aus der gegeben Verteilung von X die Verteilung von 2X bestimmen kann.
Da es sich hiebei jedoch um die Normalverteilung handelt, bin ich etwas ratlos, da ich es nicht auf dem gewohnten Weg lösen kann.

Also im Prinzip könnt ich ja [mm] \mu [/mm] und [mm] \sigma [/mm] von 2X ausrechnen, was hier sicherlich zum Ziel führt, aber das funktioniert womöglich nicht immer.
Wär also echt klasse, wen da jemand an Tipp hätte wie man sowas angeht?

Vielen Dank.

        
Bezug
Kurze Frage zur Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 So 04.07.2010
Autor: steppenhahn

Hallo,



>  Sei [mm]X\sim{N(\mu=0,\sigma=1)}.[/mm]
>  Ist dann [mm]2X\sim{N(\mu=0,\sigma=4)}?[/mm]
>  Mahlzeit,
>  also ich weiß normalerweise wie ich aus der gegeben
> Verteilung von X die Verteilung von 2X bestimmen kann.
>  Da es sich hiebei jedoch um die Normalverteilung handelt,
> bin ich etwas ratlos, da ich es nicht auf dem gewohnten Weg
> lösen kann.

Was ist denn dein gewohnter Weg?

> Also im Prinzip könnt ich ja [mm]\mu[/mm] und [mm]\sigma[/mm] von 2X
> ausrechnen, was hier sicherlich zum Ziel führt, aber das
> funktioniert womöglich nicht immer.
>  Wär also echt klasse, wen da jemand an Tipp hätte wie
> man sowas angeht?

Du solltest dich mit dem Thema "Lineare Transformationen von Zufallsvariablen" auseinandersetzen.
(zum Beispiel []hier, Seite 38 (und vorherige für die Herleitung) oder vielleicht noch besser []das hier.

Hier geht es aber auch etwas einfacher: Praktischerweise gilt ja für [mm] X\sim N(\mu,\sigma^{2}): [/mm]

[mm] $\mu [/mm] = E(X)$
[mm] $\sigma^{2} [/mm] = Var(X).$

Also:

[mm] $\mu_{2X} [/mm] = E(2X) = 2*E(X)$
[mm] $\sigma^{2}_{2X} [/mm] = Var(2X) = [mm] 2^{2}*Var(X)$ [/mm]

Grüße,
Stefan


Bezug
                
Bezug
Kurze Frage zur Verteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:29 So 04.07.2010
Autor: kegel53

Vielen Dank für die Links !!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]