www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Kurvendiskussion
Kurvendiskussion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: krümmungsverhalten
Status: (Frage) beantwortet Status 
Datum: 11:11 Sa 25.06.2011
Autor: mwieland

Aufgabe
Disekutieren Sie folgende Kurve:

[mm] f(x)=(x^2+1)*e^{\vmat{ x-1 }} [/mm]

Hallo leute, hätte eine frage zu dieser aufgabe!

Bin jetzt bei dem Punkt Krümmungsverhalten für den Fall 2 (x-1 < 0)

Beim krümmungsverhalten untersucht man ja ob die zweite ableitung < bzw. [mm] \le [/mm] 0 ist (streng konkav/konkav) oder ob sie > bzw. [mm] \ge [/mm] 0 ist (streng konvex/konvex), nicht wahr?

hier hab ich nun für diesen Fall eine zweite ableitung von

[mm] f''(x)=e^{-x+1}(x^2-4x+1) [/mm]

wie untersucht man das am besten (=richtigsten) auf das krümmungsverhalten? muss ich da eine Grenzwertuntersuchung machen oder suche ich mir einfach ein paar punkte (zB in der nähe der Wendepunkte) raus und teste einfach durch oder wie macht man das?

vielen dank schon mal für eure Hilfe!

lg markus

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:29 Sa 25.06.2011
Autor: fred97


> Disekutieren Sie folgende Kurve:
>  
> [mm]f(x)=(x^2+1)*e^{\vmat{ x-1 }}[/mm]
>  Hallo leute, hätte eine
> frage zu dieser aufgabe!
>  
> Bin jetzt bei dem Punkt Krümmungsverhalten für den Fall 2
> (x-1 < 0)
>  
> Beim krümmungsverhalten untersucht man ja ob die zweite
> ableitung < bzw. [mm]\le[/mm] 0 ist (streng konkav/konkav) oder ob
> sie > bzw. [mm]\ge[/mm] 0 ist (streng konvex/konvex), nicht wahr?
>  
> hier hab ich nun für diesen Fall eine zweite ableitung von
>
> [mm]f''(x)=e^{-x+1}(x^2-4x+1)[/mm]
>  
> wie untersucht man das am besten (=richtigsten) auf das
> krümmungsverhalten? muss ich da eine Grenzwertuntersuchung
> machen oder suche ich mir einfach ein paar punkte (zB in
> der nähe der Wendepunkte) raus und teste einfach durch
> oder wie macht man das?


Überlege Dir in welchen Teilintervallen von [mm] (-\infty,1) [/mm] die Funktion

$ [mm] f''(x)=e^{-x+1}(x^2-4x+1) [/mm] $

welches Vorzeichen hat.

FRED

>  
> vielen dank schon mal für eure Hilfe!
>  
> lg markus


Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:04 Sa 25.06.2011
Autor: mwieland

das kann ich aber nur durch ausprobieren mit verschiedenen werten machen, oder gibt es hier irgendeinen trick?

dank und lg

Bezug
                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 Sa 25.06.2011
Autor: fred97

Es ist

            

$ [mm] f''(x)=e^{-x+1}(x^2-4x+1) \ge [/mm] 0 $  (bzw. [mm] \le [/mm] 0)

               [mm] \gdw [/mm]



[mm] $(x^2-4x+1) \ge [/mm] 0 $  (bzw. [mm] \le [/mm] 0)

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]