www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Kurvendiskussion
Kurvendiskussion < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:17 Sa 20.05.2006
Autor: Clone

Aufgabe
Für k (element) R sei [mm] f_k(x) [/mm] = x³ + (k - 4)x² + (4 - 4k)x + 4k. Zeige, dass die Funktion f(x) = x³ - 3x² +4 zur Funktionenschar [mm] f_k [/mm] gehört und dass bis auf einen alle Funktionsgraphen an der Stelle 2 die 1. Achse berühren.

Hallo,
ich habe den Ansatz, den Loddar mir gegeben hat (f(x)=2 und´f´(x)=2) ausprobiert und bekomme heraus, dass k = 0 ist, aber das kann nicht sein.

Was mache ich falsch?

Danke für eure Mühen!

Gruß

Clone

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 Sa 20.05.2006
Autor: mareike_abi07

==>
Zeige, dass die Funktion f(x) = x³ - 3x² +4 zur Funktionenschar  gehört
==>

Du musst gucken, ob die "Bedingungen" aus den Angaben der Funktionenschar in dieser Funktion f(x) erfüllt sind. Du kannst dir folgende Gleichungen aufstellen, um dies zu beweisen.

Teile der Schar = Teile von f(x)??

[mm] x^3 [/mm]                 =    [mm] x^3 [/mm]
(k - 4) [mm] x^2 [/mm]          =    -3 [mm] x^2 [/mm]
(4 - 4k)x          =    0x
4k                  =     4  [mm] \Rightarrow [/mm] hieraus folgt dass k = 1 ist und nun setzt du das in die anderen Gleichung ein um zu gucken, ob k = 1 auch dort stimmt. Wenn das der Fall ist, (was es ist) hast du bewiesen, dass f(x) Element der Funktionenschar ist.

Bezug
        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 Sa 20.05.2006
Autor: mareike_abi07

Ach ich vergaß den zweiten Teil der Frage, sorry!

Also, um zu zeigen, dass alle Funktionsgraphen an der STelle 2 die 1. Achse schneiden (was heißt, dass alle Funktionen fk(x) bei x = 2 eine Nullstelle haben), musst du einfach 2 einsetzen in fk.

Sprich
fk (2) = [mm] 2^3 [/mm] + [mm] (k-4)*2^2 [/mm] + (4-4k)*2+4k
Wenn du das jetzt auflöst, steht da

8 + 4(k-4) +2(4-4k) +4k

und dann

8 +4k -16 +8 -8k +4k

und wenn du da jetzt alles zusammenfasst kommt auf jeden Fall null raus.

jetzt ist nur die Frage, ob man darstellen muss, welcher der eine Graph ist, der nicht an der Stelle 2 null wird.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]