www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Kosinusgleichung
Kosinusgleichung < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kosinusgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:47 Di 10.01.2012
Autor: steve.joke

Hallo,

ich habe gerade ein Brett vor dem Kopf, wie löst man nochmal

cos(x)=-cos(2x)?? als ergebnis kriegt man [mm] x=\bruch{\pi}{3}. [/mm] Aber wie berechnet man das??

        
Bezug
Kosinusgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 Di 10.01.2012
Autor: reverend

Hallo steve,

> ich habe gerade ein Brett vor dem Kopf, wie löst man
> nochmal
>  
> cos(x)=-cos(2x)?? als ergebnis kriegt man [mm]x=\bruch{\pi}{3}.[/mm]
> Aber wie berechnet man das??

Du löst mit dem passenden Additionstheorem den Term [mm] \cos{(2x)} [/mm] auf:

[mm] \cos{(2x)}=\cos^2{(x)}-\sin^2{(x)}=2\cos^2{(x)}-1 [/mm]

Dann einsetzen, evtl. noch [mm] \cos{x}=z [/mm] ersetzen, und Du hast eine gewöhnliche quadratische Gleichung.

Grüße
reverend


Bezug
                
Bezug
Kosinusgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:09 Di 10.01.2012
Autor: steve.joke

HI,

ok. danke.

wenn die quadratische gleichung dann löse, dann kriege ich

[mm] z_1=1 [/mm] und [mm] z_2=0,5 [/mm]

d.h. cos(x)=1 und cos(x)=0,5

wie kommt man jetzt auf die [mm] x=\bruch{\pi}{3}??? [/mm]

Bezug
                        
Bezug
Kosinusgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:22 Di 10.01.2012
Autor: schachuzipus

Hallo steve.joke,


> HI,
>  
> ok. danke.
>  
> wenn die quadratische gleichung dann löse, dann kriege
> ich
>  
> [mm]z_1=1[/mm]

Nicht doch [mm] $z_1=\red{-}1$ [/mm] ?

> und [mm]z_2=0,5[/mm]
>  
> d.h. cos(x)=1 und cos(x)=0,5
>  
> wie kommt man jetzt auf die [mm]x=\bruch{\pi}{3}???[/mm]  

Entweder zeichnest du dir den Graphen des Kosinus aus oder du kennst gewisse Werte (was man sicher tun sollte)

Ansonsten kannst du es (mit dem TR) auflösen, wende die Umkehrfunktion des Kosinus, den Arcuskosinus an ...

Die angegebene Lösung ist aber bei Weitem nicht die einzige ...

Oder hast du ein Lösungsintervall vorgegeben?

Gruß

schachuzipus


Bezug
                                
Bezug
Kosinusgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:37 Di 10.01.2012
Autor: steve.joke

Ne,

war kein Intervall vorgegeben.

Ok, danke euch.

Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]