www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Konvergenzverhalten in Endpunk
Konvergenzverhalten in Endpunk < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzverhalten in Endpunk: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 15:53 Mi 23.05.2012
Autor: Steffen2361

Aufgabe
Geben Sie ein Beispiel eine Potenzreihe an, die in jedem Endpunkt ihres Konvergenzintervalls folgendes Verhalten zeigt:

a) In beiden Endpunkten divergiert die Reihe

Also ok ich hätte die Reihe

[mm] \summe_{i=1}^{\infty} x^n [/mm]

hergenommen. Aber was muss ich jetzt genau zeigen?

Danke euch

        
Bezug
Konvergenzverhalten in Endpunk: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 Mi 23.05.2012
Autor: schachuzipus

Hallo Staffen2361,


> Geben Sie ein Beispiel eine Potenzreihe an, die in jedem
> Endpunkt ihres Konvergenzintervalls folgendes Verhalten
> zeigt:
>  
> a) In beiden Endpunkten divergiert die Reihe
>  Also ok ich hätte die Reihe
>
> [mm]\summe_{i=1}^{\infty} x^n[/mm]

Du meinst sicher [mm]\sum\limits_{\red{n}=1}^{\infty}x^n[/mm]

>
> hergenommen. Aber was muss ich jetzt genau zeigen?

Nun diese Reihe hat bekanntermaßen (hoffe ich doch, ansonsten nachrechnen!) den Konvergenzradius 1, konvergiert also für [mm]|x|<1[/mm] und divergiert für [mm]|x|>1[/mm]

Setzte nun die beiden Randpunkte, also [mm]|x|=1[/mm], dh. [mm]x=1, x=-1[/mm] in die Reihe ein und rechne vor, dass sie divergiert.

>  
> Danke euch

Gruß

schachuzipus


Bezug
                
Bezug
Konvergenzverhalten in Endpunk: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Mi 23.05.2012
Autor: Steffen2361


> Setzte nun die beiden Randpunkte, also [mm]|x|=1[/mm], dh. [mm]x=1, x=-1[/mm]
> in die Reihe ein und rechne vor, dass sie divergiert.



Ok also war es doch so einfach, danke

Hätte aber noch eine Zusatzfrage und zwar ob ich folgenden Konvergenzradius richtig berechnet habe.

[mm] \limes_{n\rightarrow\infty} |\bruch{a_n}{a_{n+1}}| [/mm] =  [mm] \limes_{n\rightarrow\infty} |\bruch{1^n}{1^{n+1}}| [/mm] = 1

Da 1 hoch jeder Zahl 1 ist

Stimmt das so ?

mfg

>  
> >  

> > Danke euch
>
> Gruß
>  
> schachuzipus
>  


Bezug
                        
Bezug
Konvergenzverhalten in Endpunk: Antwort
Status: (Antwort) fertig Status 
Datum: 16:22 Mi 23.05.2012
Autor: schachuzipus

Hallo nochmal,


> > Setzte nun die beiden Randpunkte, also [mm]|x|=1[/mm], dh. [mm]x=1, x=-1[/mm]
> > in die Reihe ein und rechne vor, dass sie divergiert.
>  
>
>
> Ok also war es doch so einfach, danke
>  
> Hätte aber noch eine Zusatzfrage und zwar ob ich folgenden
> Konvergenzradius richtig berechnet habe.
>  
> [mm]\limes_{n\rightarrow\infty} |\bruch{a_n}{a_{n+1}}|[/mm] =   [mm]\limes_{n\rightarrow\infty} |\bruch{1^n}{1^{n+1}}|[/mm] = 1 [ok]
>
> Da 1 hoch jeder Zahl 1 ist
>
> Stimmt das so ?

Aye!

>  
> mfg
>  


Gruß

schachuzipus


Bezug
                        
Bezug
Konvergenzverhalten in Endpunk: Antwort
Status: (Antwort) fertig Status 
Datum: 09:11 Do 24.05.2012
Autor: fred97

Nur eine Bemerkung:

Du berechnest also den Konvergenzradius 1 der geometrischen Reihe mit Hilfe des Quotientenkriteriums.

Wenn man sich anschaut, wie das Quotientenkriterium bewiesen wird, so stellt man fest, das der Beweis im wesentlichen ausnutzt, das die geometrische Reihe den Konvergenzradius 1 hat.

Da dreht sich gewaltig was im Kreis !

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]