www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Konvergenzsatz
Konvergenzsatz < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzsatz: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 12:00 Mo 15.03.2010
Autor: HansPeter

Aufgabe
sei [mm] f_k [/mm] : [mm] \IR [/mm] -> [mm] \IR [/mm] definiert durch [mm] f_k [/mm] = [mm] e^{-k*x^2} [/mm] für k [mm] \in\IN [/mm]

Zeigen sie: [mm] \limes_{k\rightarrow\infty} \integral_{\IR}^{}{f_k (x) dx} [/mm] = 0

Hallo!
Ich sitze gerade an obiger Aufgabe (Ana 3) und bin jetzt soweit:

also der Grenzwert con [mm] f_k [/mm] ist ja gerade 0 und daraus muss ich auch irgendwie schließen, dass das Integral  = 0 ist und ich denke ich muss da irgendwie mit einem Konvergenzsatz dran.
Ich weiß nur leider nicht mit welchen weil die Funktion ist aufjedenfall schonmal nicht monoton steigend und deshalb fallen die meisten ja schon aus.
was ist mit der majorisierten Konvergenz? geht das damit? bzw wie komm ich dann auf die majorante?


Danke schonmal für eure Hilfe!!!

        
Bezug
Konvergenzsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:20 Mo 15.03.2010
Autor: fred97

Tipps:

1. [mm] (f_k) [/mm] konvergiert auf ganz [mm] \IR [/mm] punktweise gegen die Funktion [mm] $f\equiv [/mm] 0$


Edit: wie pelzig richtig bemerkt hat, ist [mm] f_k(0) [/mm] = 1  für jedes k.  [mm] (f_k) [/mm] konvergiert also fast überall gegen 0


2. Für $x [mm] \in \IR$ [/mm] ist : [mm] $e^{kx^2} \ge 1+kx^2 \ge 1+x^2$ [/mm]

3. Aus 2. folgt: [mm] $|f_k(x)| \le \bruch{1}{1+x^2}$ [/mm] für jedes x in [mm] \IR [/mm]


4. Satz von der majorisierten Konvergenz


FRED


P.S. es geht auch ohne einen Konvrgenzsatz:

Es ist $0 [mm] \le f_k(x) \le \bruch{1}{1+kx^2}$. [/mm] Also:

              $0 [mm] \le \integral_{\IR}^{}{f_k(x) dx} \le \integral_{\IR}^{}{\bruch{1}{1+kx^2} dx}= \bruch{\pi}{\wurzel{k}}$ [/mm]

Bezug
                
Bezug
Konvergenzsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:33 Mo 15.03.2010
Autor: pelzig

Ich wollte nur mal anmerken, dass [mm] $f_k(0)=1$ [/mm] ist für alle [mm] $k\in\IN$, [/mm] d.h. die Grenzfunktion ist nicht ganz die Nullfunktion. Nur für den Fall dass hier jemand an gleichmäßige Konvergenz gedacht hat... ;-)

Gruß, Robert

Bezug
                        
Bezug
Konvergenzsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:35 Mo 15.03.2010
Autor: fred97


> Ich wollte nur mal anmerken, dass [mm]f_k(0)=1[/mm] ist für alle
> [mm]k\in\IN[/mm], d.h. die Grenzfunktion ist nicht ganz die
> Nullfunktion.

Upps, das hatte ich übersehehn. Trotzdem

       $ [mm] (f_k) [/mm] $ konvergiert auf $ [mm] \IR [/mm] $ fast überall gegen die Funktion $ [mm] f\equiv [/mm] 0 $


FRED



> Nur für den Fall dass hier jemand an
> gleichmäßige Konvergenz gedacht hat... ;-)
>  
> Gruß, Robert


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]