www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz zeigen
Konvergenz zeigen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Di 01.08.2017
Autor: Rocky1994

Guten Tag,

ich scheitere an folgende Aufgabe und hoffe ihr könnt mir weiterhelfen.

Aufgabe:

Weisen sie schlüssig nach, dass nachfolgend gegebene Reihe konvergiert:

[mm] \summe_{i=1}^{\infty} \bruch{n}{(3-\bruch{1}{n})^{n}} [/mm]

Meine Idee: Ich würde es übers Wurzelkriterium zeigen. Weiß aber nicht, ob das so richtig ist.

[mm] \summe_{i=1}^{\infty} \bruch{n}{(3-\bruch{1}{n})^{n}} [/mm] =>  [mm] \limes_{n\rightarrow\infty} \wurzel[n]{\bruch{n}{(3-\bruch{1}{n})^{n}}} [/mm] = [mm] \limes_{n\rightarrow\infty} \bruch{\wurzel[n]{n}}{\wurzel[n]{3-\bruch{1}{n})^{n}}} [/mm] = [mm] \limes_{n\rightarrow\infty} \bruch{\wurzel[n]{n}}{3-\bruch{1}{n}}=\limes_{n\rightarrow\infty} \bruch{\wurzel[n]{n}*n}{3*n-1} [/mm] = [mm] \limes_{n\rightarrow\infty} \bruch{n^{\bruch{1}{n}+1}}{3*n-1} [/mm] = [mm] \limes_{n\rightarrow\infty} \bruch{n^{\bruch{1+n}{n}}}{3*n-1} [/mm] = [mm] \limes_{n\rightarrow\infty} \bruch{n*n^{\bruch{1+n}{n}-1}}{n*(3-\bruch{1}{n})} [/mm] = [mm] \limes_{n\rightarrow\infty} \bruch{n^{\bruch{1}{n}}}{3-\bruch{1}{n}} [/mm] = [mm] \bruch{1}{3} [/mm]  , da [mm] \bruch{1}{3}<1 [/mm] => Konvergenz

Kann man das so machen?

LG Rocky1994

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Di 01.08.2017
Autor: angela.h.b.

Hallo,

[willkommenmr].

Richtig gemacht!

LG Angela

Bezug
                
Bezug
Konvergenz zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:01 Di 01.08.2017
Autor: Rocky1994

Vielen Dank für deine Hilfe!

LG Rocky1994

Bezug
        
Bezug
Konvergenz zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:24 Mi 02.08.2017
Autor: fred97

Du schreibst

$ [mm] \limes_{n\rightarrow\infty} \bruch{\wurzel[n]{n}}{3-\bruch{1}{n}}=\limes_{n\rightarrow\infty} \bruch{\wurzel[n]{n}\cdot{}n}{3\cdot{}n-1} [/mm] $ = $ [mm] \limes_{n\rightarrow\infty} \bruch{n^{\bruch{1}{n}+1}}{3\cdot{}n-1} [/mm] $ = $ [mm] \limes_{n\rightarrow\infty} \bruch{n^{\bruch{1+n}{n}}}{3\cdot{}n-1} [/mm] $ = $ [mm] \limes_{n\rightarrow\infty} \bruch{n\cdot{}n^{\bruch{1+n}{n}-1}}{n\cdot{}(3-\bruch{1}{n})} [/mm] $ = $ [mm] \limes_{n\rightarrow\infty} \bruch{n^{\bruch{1}{n}}}{3-\bruch{1}{n}} [/mm] $

Ganz rechts und ganz links steht dasselbe ! Wozu das Gedöns in der Mitte ?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]