www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz von Reihen
Konvergenz von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:01 Di 04.12.2007
Autor: sie-nuss

Aufgabe
[mm] \summe_{k=1}^{\infty} \bruch{a_{k}}{1+a_{k}} [/mm] konvergiert [mm] \Rightarrow [/mm]
[mm] \summe_{k=1}^{\infty} a_{k} [/mm]   konvergiert.

Hallo an alle!

Hab keine Idee außer nem kleinen Ansatz dass ja dann die Folge [mm] \bruch{a_{k}}{1+a_{k}} [/mm]  gegen 0 konvergiert.....

Viele Grüße!!

        
Bezug
Konvergenz von Reihen: weitere Angaben
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:10 Di 04.12.2007
Autor: Roadrunner

Hallo sie-nuss!


Wie lautet denn die konkrete Aufgabenstellung? Soll man das beweisen oder widerlegen? Gibt es zusätzliche Angaben zu [mm] $a_k$ [/mm] ?

Bitte mal die vollständige Aufgabenstellung posten ...


Gruß vom
Roadrunner


Bezug
                
Bezug
Konvergenz von Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:13 Di 04.12.2007
Autor: sie-nuss

also die genau aufgabenstellung ist eigentlich die Äquivalenz zu zeigen. aber die eine Richtung war einfach :)

Ja, sorry ich hab vergessen zu sagen dass [mm] (a_{k}) \subset \IR_{+} \backslash [/mm] {0}

Bezug
        
Bezug
Konvergenz von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 Di 04.12.2007
Autor: angela.h.b.


> [mm]\summe_{k=1}^{\infty} \bruch{a_{k}}{1+a_{k}}[/mm] konvergiert
> [mm]\Rightarrow[/mm]
>  [mm]\summe_{k=1}^{\infty} a_{k}[/mm]   konvergiert.
>  Hallo an alle!
>  
> Hab keine Idee außer nem kleinen Ansatz dass ja dann die
> Folge [mm]\bruch{a_{k}}{1+a_{k}}[/mm]  gegen 0 konvergiert.....

Hallo,

und weil das so ist, konvergiert [mm] a_k [/mm] gegen Null, ist also nach oben beschränkt, etwa  durch s

Ich würde hier mit dem Cauchykriterium arbeiten und folgendes tun

[mm] |\summe_{k=1}^{n} a_{k}-\summe_{k=1}^{m} a_{k}|= a_{m+1}+...+a_n =\bruch{s+1}{s+1}(a_{m+1}+...+a_n) [/mm]

und dann weiter, indem Du später Cauchy für  [mm] \summe_{k=1}^{\infty} \bruch{a_{k}}{1+a_{k}} [/mm] ins Spiel bringst.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]