www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Konvergenz prüfen
Konvergenz prüfen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz prüfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 Mo 15.09.2008
Autor: RENE85

Aufgabe
[mm] \bruch{3n-1}{n!} [/mm]

Mit Hilfe des Quotientenkriteriums auf Konvergenz prüfen.

Ich bin mir nicht ganz sicher wie weit man hier rechnen muss/kann bis eine Konvergenz nachgewiesen ist.

Meine Rechnung bisher:

Quotientenkriterium:
[mm] \bruch{\bruch{3(n+1)-1}{(n+1)!}}{\bruch{3n-1}{n!}} [/mm]

Doppelbruch entfernen:
[mm] \bruch{(3n+2)n!}{(n+1)! * (3n-1)} [/mm]

n! kürzen:
[mm] \bruch{3n+2}{(n+1)*(3n-1)} [/mm]

[mm] \bruch{3n+2}{3n^2+2n-1} [/mm]

Ab hier wüsste ich nicht sinnvoll weiter aufzulösen, von daher die Frage:
Kann ich ab hier auf eine Konvergenz schliessen, da ja offensichtlich "<1" vorliegt?
Wenn nicht wie müsste ich weiter vorgehen?

lg Rene




        
Bezug
Konvergenz prüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 Mo 15.09.2008
Autor: schachuzipus

Hallo Rene,

> [mm]\bruch{3n-1}{n!}[/mm]
>  
> Mit Hilfe des Quotientenkriteriums auf Konvergenz prüfen.
>  Ich bin mir nicht ganz sicher wie weit man hier rechnen
> muss/kann bis eine Konvergenz nachgewiesen ist.
>  
> Meine Rechnung bisher:
>  
> Quotientenkriterium:
>  [mm]\bruch{\bruch{3(n+1)-1}{(n+1)!}}{\bruch{3n-1}{n!}}[/mm]
>  
> Doppelbruch entfernen:
>  [mm]\bruch{(3n+2)n!}{(n+1)! * (3n-1)}[/mm]
>  
> n! kürzen:
>  [mm]\bruch{3n+2}{(n+1)*(3n-1)}[/mm]
>  
> [mm]\bruch{3n+2}{3n^2+2n-1}[/mm] [daumenhoch]

gut soweit!

>  
> Ab hier wüsste ich nicht sinnvoll weiter aufzulösen, von
> daher die Frage:
>  Kann ich ab hier auf eine Konvergenz schliessen, da ja
> offensichtlich "<1" vorliegt?

Die höchste Potenz von n im Nenner (also 2) ist ja größer als diejenige im Zähler (1), also kannst du durch "Hinsehen" sagen, dass das Biest für [mm] $n\to\infty$ [/mm] gegen $q=0$ konvergiert. Da 0<1 folgt (absolute) Konvergenz der Reihe

Rechnerisch klammere im Zähler n, im Nenner [mm] n^2 [/mm] aus, kürze einmal n weg un mache dann den Grenzübergang [mm] $n\to\infty$ [/mm]

Dann ergibt sich der GW 0 durch die Grenzwertsätze ...

>  Wenn nicht wie müsste ich weiter vorgehen?
>  
> lg Rene
>


LG

schachuzipus

>


Bezug
                
Bezug
Konvergenz prüfen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:54 Mo 15.09.2008
Autor: RENE85

super, vielen dank! ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]