Konvergenz einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:44 Sa 18.06.2011 | Autor: | WWatson |
Aufgabe | Sei z [mm] \in \IC [/mm] eine beliebige komplexe Zahl mit |z|<1. Zeigen Sie, dass die Reihe: [mm] \summe_{n=0}^{\infty} (n+1)*z^{n} [/mm] konvergiert und berechnen Sie den Grenzwert.
Hinweis: Man benutze das Cauchy-Produkt. |
Hallo,
ich hänge gerade bei dieser Aufgabe. Ich weiß zunächst mal, dass [mm] z^{n} [/mm] absolut konvergent ist (Geom. Reihe), da |z|<1. Außerdem kann ich ja die Summe zerlegen in:
[mm] \summe_{n=0}^{\infty} (n)*z^{n} [/mm] + [mm] \summe_{n=0}^{\infty} z^{n}. [/mm]
In einer anderen Übungsaufgabe haben wir gezeigt, dass, falls [mm] \summe_{n=0}^{\infty} a_{n} [/mm] konvergiert und [mm] a_{n} [/mm] eine monoton fallende Nullfolge mit positiven Gliedern ist, gilt:
[mm] \limes_{n\rightarrow\infty} [/mm] (n*an) = 0.
Nun gilt ja:
[mm] \summe_{n=0}^{\infty} (n)*z^{n} \le \summe_{n=0}^{\infty} (n)*|z|^{n} [/mm] und somit ist ja [mm] (n)*|z|^{n} [/mm] eine Nullfolge.
Ich weiß aber nicht wirklich, wie ich jetzt weiter vorgehen soll.
Ich habe auch versucht, den Grenzwert zu berechnen, aber für allgemeines z fällt mir das ziemlich schwer, weil ich nicht wirklich weiß, wie ich dabei vorgehen muss.
Kann mir vielleicht jemand helfen?
Gruß,
WWatson
|
|
|
|
Hallo WWatson,
> Sei z [mm]\in \IC[/mm] eine beliebige komplexe Zahl mit |z|<1.
> Zeigen Sie, dass die Reihe: [mm]\summe_{n=0}^{\infty} (n+1)*z^{n}[/mm]
> konvergiert und berechnen Sie den Grenzwert.
>
> Hinweis: Man benutze das Cauchy-Produkt.
> Hallo,
>
> ich hänge gerade bei dieser Aufgabe. Ich weiß zunächst
> mal, dass [mm]z^{n}[/mm] absolut konvergent ist (Geom. Reihe), da
> |z|<1. Außerdem kann ich ja die Summe zerlegen in:
> [mm]\summe_{n=0}^{\infty} (n)*z^{n}[/mm] + [mm]\summe_{n=0}^{\infty} z^{n}.[/mm]
> In einer anderen Übungsaufgabe haben wir gezeigt, dass,
> falls [mm]\summe_{n=0}^{\infty} a_{n}[/mm] konvergiert und [mm]a_{n}[/mm]
> eine monoton fallende Nullfolge mit positiven Gliedern ist,
> gilt:
> [mm]\limes_{n\rightarrow\infty}[/mm] (n*an) = 0.
> Nun gilt ja:
> [mm]\summe_{n=0}^{\infty} (n)*z^{n} \le \summe_{n=0}^{\infty} (n)*|z|^{n}[/mm]
> und somit ist ja [mm](n)*|z|^{n}[/mm] eine Nullfolge.
> Ich weiß aber nicht wirklich, wie ich jetzt weiter
> vorgehen soll.
> Ich habe auch versucht, den Grenzwert zu berechnen, aber
> für allgemeines z fällt mir das ziemlich schwer, weil ich
> nicht wirklich weiß, wie ich dabei vorgehen muss.
> Kann mir vielleicht jemand helfen?
2 Möglichkeiten:
1) nutze den Tipp:
Du weißt, dass für [mm]|z|<1[/mm] die geometr. Reihe [mm]\sum\limits_{n=0}^{\infty}z^n[/mm] den Wert [mm]\frac{1}{1-z}[/mm] hat.
Bilde das Cauchyprodukt der Reihe mit sich selbst:
[mm]\left( \ \sum\limits_{n=0}^{\infty}z^n \ \right)\cdot{}\left( \ \sum\limits_{n=0}^{\infty}z^n \ \right)[/mm]
Was kommt da heraus? Multipliziere auch die Werte der Reihen ...
2) Leite die geometr. Reihe ab (das darfst du innerhalb des Konvergenzbereiches gliedweise tun): für [mm]|z|<1[/mm] ist
[mm]\sum\limits_{n=0}^{\infty}z^n \ = \ \frac{1}{1-z}[/mm]
[mm]\Rightarrow \left( \ \sum\limits_{n=0}^{\infty}z^n \ \right)' \ = \ \left(\frac{1}{1-z}\right)'[/mm] ...
>
> Gruß,
>
> WWatson
LG
schachuzipus
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:41 Sa 18.06.2011 | Autor: | WWatson |
Hallo, schachuzipus,
erstmal vielen Dank für die schnelle Hilfe. Habe jetzt das Cauchy-Produkt mal für die n-te Partialsumme gebildet, und da kommt ja grade [mm] (n+1)*z^{n} [/mm] raus. Da jetzt das Cauchy-Produkt zweier absolut konvergenter Reihen wieder absolut konvergent ist, folgt die Konvergenz von [mm] \summe_{n=0}^{\infty} (n+1)\cdot{}z^{n}. [/mm] Und der Grenzwert wären dann ja grade [mm] \bruch{1}{(1-z)^2}, [/mm] oder?
Vielleicht sollte ich bei der nächsten Aufgabe einfach mal die Hinweise anwenden, bevor ich irgendwas anderes versuche...^^ Vielen Dank nochmal!
Gruß,
WWatson
|
|
|
|
|
Hallo nochmal,
> Hallo, schachuzipus,
>
> erstmal vielen Dank für die schnelle Hilfe. Habe jetzt das
> Cauchy-Produkt mal für die n-te Partialsumme gebildet,
Wieso Partialsumme?
> und
> da kommt ja grade [mm](n+1)*z^{n}[/mm] raus.
Nur zur Sicherheit, du meinst es bestimmt so:
Naja, es ist [mm]\left( \ \sum\limits_{n=0}^{\infty}z^n \ \right)\cdot{}\left( \ \sum\limits_{n=0}^{\infty}z^n \ \right) \ = \ \sum\limits_{n=0}^{\infty}\sum\limits_{k=0}^{n}\left(z^k\cdot{}z^{n-k}\right) \ = \ \sum\limits_{n=0}^{\infty}\sum\limits_{k=0}^{n}z^{n}[/mm]
In der inneren Summe ist [mm]z^n[/mm] unabh. vom Laufindex k, es wird dort also von k=0 bis k=n, dh. [mm](n+1)[/mm]-mal [mm]z^n[/mm] summiert, bleibt also
[mm]= \ \sum\limits_{n=0}^{\infty}(n+1)\cdot{}z^n[/mm]
> Da jetzt das
> Cauchy-Produkt zweier absolut konvergenter Reihen wieder
> absolut konvergent ist, folgt die Konvergenz von
> [mm]\summe_{n=0}^{\infty} (n+1)\cdot{}z^{n}.[/mm] Und der Grenzwert
> wären dann ja grade [mm]\bruch{1}{(1-z)^2},[/mm] oder?
> Vielleicht sollte ich bei der nächsten Aufgabe einfach mal
> die Hinweise anwenden, bevor ich irgendwas anderes
> versuche...^^ Vielen Dank nochmal!
>
> Gruß,
>
> WWatson
LG
schachuzipus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:16 Sa 18.06.2011 | Autor: | WWatson |
Hallo, schachuzipus,
wir haben das Cauchy-Produkt so definiert:
Das Cauchy-Produkt von [mm] \summe_{n=0}^{\infty} a_{n} [/mm] und [mm] \summe_{n=0}^{\infty} b_{n} [/mm] ist definiert als Reihe [mm] c_{n} [/mm] mit [mm] c_{n}=\summe_{k=0}^{n} a_{k}b_{n-k}. [/mm] Und dieses [mm] c_{n} [/mm] hab ich eben ausgerechnet. Aber Du hast recht, es ist natürlich nicht die n-te Partialsumme, sondern nur der n-te Summand oder das n-te Folgenglied, habe es oben falsch bezeichnet.
Gruß
|
|
|
|
|
Hallo nochmal,
> Hallo, schachuzipus,
>
> wir haben das Cauchy-Produkt so definiert:
>
> Das Cauchy-Produkt von [mm]\summe_{n=0}^{\infty} a_{n}[/mm] und
> [mm]\summe_{n=0}^{\infty} b_{n}[/mm] ist definiert als Reihe [mm]c_{n}[/mm]
> mit [mm]c_{n}=\summe_{k=0}^{n} a_{k}b_{n-k}.[/mm]
Genau! [mm]\sum\limits_{n=0}^{\infty}c_n[/mm]
> Und dieses [mm]c_{n}[/mm]
> hab ich eben ausgerechnet.
Ja, war ja auch alles in bester Ordnung ...
> Aber Du hast recht, es ist
> natürlich nicht die n-te Partialsumme, sondern nur der
> n-te Summand oder das n-te Folgenglied, habe es oben falsch
> bezeichnet.
>
> Gruß
Jo, schönes Restwochenende ...
Gruß
schachuzipus
|
|
|
|