Konvergenz allgemein < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:42 Di 12.10.2010 | Autor: | Peano08 |
Aufgabe 1 | Sei [mm] a_n [/mm] eine nach oben beschränkte Folge reeller Zahlen und [mm] b_n :=sup(a_1, a_2, a_3, [/mm] ..., [mm] a_n). [/mm]
(1) Zeigen Sie, dass die Folge [mm] b_n [/mm] konvergiert.
(2) Zeigen Sie, dass gilt [mm] \lim_{n-> \infty} sup(a_n [/mm] | n [mm] \in \IN) [/mm] |
Aufgabe 2 | Sei [mm] a_n [/mm] eine monoton fallende Folge reeller Zahlen, die eine konvergente Teilfolge [mm] a_n_k [/mm] besitzt. zeigen Sie, dass [mm] a_n [/mm] konvergent ist. |
So, dass ist meine nun letzte Frage:
Wie mache ich denn nun das?
Zu Aufgabe 1 kann ich ja sagen [mm] \exists [/mm] A [mm] \in \IR [/mm] mit [mm] |a_n| \le [/mm] A
Und bei Aufgabe 2 kann ich ja sagen [mm] \exists [/mm] D [mm] \in \IR [/mm] mit [mm] |a_n| \ge [/mm] D
Nur weiter weiß ich nicht. Ich schreibe leider schon morgen früh und würde mir gerne noch die Lösungswege anschauen können, um sie zu verstehen und anzueignen...
Grüße,
Benjamin
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:41 Mi 13.10.2010 | Autor: | Blech |
Hi,
> Sei [mm]a_n[/mm] eine nach oben beschränkte Folge reeller Zahlen
> und [mm]b_n :=sup(a_1, a_2, a_3,[/mm] ..., [mm]a_n).[/mm]
> (1) Zeigen Sie, dass die Folge [mm]b_n[/mm] konvergiert.
> (2) Zeigen Sie, dass gilt [mm]\lim_{n-> \infty} sup(a_n[/mm] | n [mm]\in \IN)[/mm]
Leider weiß ich nicht, was mir (2) sagen soll?!
Zu (1):
[mm] $a_n$ [/mm] ist nach oben beschränkt, d.h. es gibt eine obere Schranke, damit gibt es auch eine kleinste obere Schranke K, d.h. das Supremum über alle [mm] $a_n$ [/mm] ist endlich.
Zu jedem [mm] $\varepsilon>0$ [/mm] gibt es nun ein N, für das gilt, daß [mm] $a_N>K-\varepsilon$
[/mm]
Gäbe es das N nicht, d.h. a ist nie näher als [mm] $\varepsilon$ [/mm] an K, dann wäre ja [mm] $K-\varepsilon$ [/mm] eine obere Schranke, und damit wäre K nicht die kleinste obere Schranke.
Umgekehrt ist [mm] $K-b_n<\varepsilon$ $\forall n\geq [/mm] N$, da
1. [mm] $b_N\geq a_N$ ($b_N$ [/mm] ist das Supremum über die [mm] $a_1,\ldots a_N$, [/mm] also kann es nicht kleiner als [mm] $a_N$ [/mm] sein),
2. [mm] $b_N\leq [/mm] K$ und
3. b ist monoton wachsend (das Supremum kann ja nur größer werden, wenn wir über zusätzliche [mm] $a_n$ [/mm] das Supremum bilden, bei b fügen wir mehr und mehr [mm] $a_n$ [/mm] hinzu, über die wir das Supremum bilden, also monoton wachsend, und K ist das Supremum über *alle* [mm] $a_n$, [/mm] also insbesondere über die ersten N).
> Sei [mm]a_n[/mm] eine monoton fallende Folge reeller Zahlen, die
> eine konvergente Teilfolge [mm]a_n_k[/mm] besitzt. zeigen Sie, dass
> [mm]a_n[/mm] konvergent ist.
[mm] $a_{n_k}$ [/mm] konvergiert, d.h. für jedes [mm] $\varepsilon>0$ [/mm] können wir ein K finden, so daß [mm] $a_{n_k}-L<\varepsilon$ [/mm] (L ist hier der Grenzwert), für alle [mm] $k\geq [/mm] K$. Weil aber [mm] $a_n$ [/mm] monoton, liegen für alle n zwischen [mm] $n_k$ [/mm] und [mm] $n_{k+1}$ [/mm] auch die [mm] $a_n$ [/mm] zwischen [mm] $a_{n_k}$ [/mm] und [mm] $a_{n_{k+1}}$, [/mm] und weil beide höchstens [mm] $\varepsilon$ [/mm] von L weg sind (für [mm] $k\geq [/mm] K$) gilt das auch für die [mm] $a_n$ [/mm] dazwischen.
ciao
Stefan
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:29 Mi 13.10.2010 | Autor: | fred97 |
> Sei [mm]a_n[/mm] eine nach oben beschränkte Folge reeller Zahlen
> und [mm]b_n :=sup(a_1, a_2, a_3,[/mm] ..., [mm]a_n).[/mm]
> (1) Zeigen Sie, dass die Folge [mm]b_n[/mm] konvergiert.
> (2) Zeigen Sie, dass gilt [mm]\lim_{n-> \infty} sup(a_n[/mm] | n [mm]\in \IN)[/mm]
>
> Sei [mm]a_n[/mm] eine monoton fallende Folge reeller Zahlen, die
> eine konvergente Teilfolge [mm]a_n_k[/mm] besitzt. zeigen Sie, dass
> [mm]a_n[/mm] konvergent ist.
> So, dass ist meine nun letzte Frage:
>
> Wie mache ich denn nun das?
>
> Zu Aufgabe 1 kann ich ja sagen [mm]\exists[/mm] A [mm]\in \IR[/mm] mit [mm]|a_n| \le[/mm] A
Nein das ist nicht richtig. [mm] (a_n) [/mm] ist nur nach oben beschränkt, also:
[mm]\exists[/mm] A [mm]\in \IR[/mm] mit [mm]a_n \le[/mm] A für jedes n
Dann gilt auch: [mm] b_n \le [/mm] A für jedes n
[mm] (b_n) [/mm] ist also nach oben beschränkt. Nun überlege Dir noch, dass [mm] (b_n) [/mm] monoton wachsend ist.
Damit ist nach welchem Krit. die Folge [mm] (b_n) [/mm] konvergent ?
Zu Aufgabe 1(2). Kann es sein, dass zu zeigen ist: lim sup [mm] a_n [/mm] = lim [mm] b_n [/mm] ?
> Und bei Aufgabe 2 kann ich ja sagen [mm]\exists[/mm] D [mm]\in \IR[/mm] mit
> [mm]|a_n| \ge[/mm] D
Nein, das gilt für jede Folge (mit D=0)
Die Teilfolge [mm] (a_{n_k}) [/mm] habe den Grenzwert a. Sei [mm] \epsilon [/mm] > 0. Es gibt ein [mm] k_0 [/mm] mit
(*) $a- [mm] \epsilon [/mm] < [mm] a_{n_{k}} [/mm] <a+ [mm] \epsilon$ [/mm] für k [mm] \ge k_0
[/mm]
Setze N:= [mm] n_{k_0}
[/mm]
Sei n [mm] \ge [/mm] N. Wähle j [mm] \ge k_0 [/mm] so, dass [mm] n_j \ge [/mm] n.
Dann:
$a- [mm] \epsilon [/mm] < [mm] a_{n_{j}} \le a_n \le a_{n_{k_0}}
Also: $a- [mm] \epsilon [/mm] < [mm] a_n [/mm] <a+ [mm] \epsilon$ [/mm] für n [mm] \ge [/mm] N.
FRED
>
> Nur weiter weiß ich nicht. Ich schreibe leider schon
> morgen früh und würde mir gerne noch die Lösungswege
> anschauen können, um sie zu verstehen und anzueignen...
>
> Grüße,
> Benjamin
|
|
|
|