www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Konvergenz
Konvergenz < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:10 Mi 31.12.2008
Autor: JMW

Aufgabe
Prüfen Sie ob [mm] \limes_{x\rightarrow 0} e^{-\bruch{1}{x}} [/mm] konvergent ist

Laut Lösung soll diese Funktion divergent sein. Aber wenn x gegen 0 geht, dann geht die Funktion gegen [mm] e^{-\infty} [/mm] was gegen 0 ist.

Dann konvergiert die Funktion doch und zwar gegen 0 oder nicht?

        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 Mi 31.12.2008
Autor: M.Rex

Hallo

Betrachte hier mal Beide Grenzwerte, also einmal den "von oben", also rechtsseitigen und den "von unten", also linksseitigen.

Diese sind hier nämlich Unterschiedlich.

Nimm zuerst mal den von links.
Ersetze mal [mm] x\to0 [/mm] durch die Folge [mm] x_{n}:=-\bruch{1}{n} [/mm] und lasse dann n gegen [mm] \infty [/mm] laufen.
Also:
$$ [mm] \limes_{x\rightarrow 0} e^{-\bruch{1}{x}} [/mm] $$
$$ [mm] =\limes_{n\rightarrow\infty}e^{-\bruch{1}{-\bruch{1}{n}}} [/mm] $$
$$ [mm] =\limes_{n\rightarrow\infty}e^{+\bruch{1}{\bruch{1}{n}}} [/mm] $$
$$ [mm] =\limes_{n\rightarrow\infty}e^{+n} [/mm] $$
$$ [mm] =\infty [/mm] $$


Jetzt den von rechts

[mm] x\to0 [/mm] ersetze nun durch die Folge [mm] x_{n}:=+\bruch{1}{n} [/mm]
Das ergibt:
$$ [mm] \limes_{x\rightarrow 0} e^{-\bruch{1}{x}} [/mm] $$
$$ [mm] =\limes_{n\rightarrow\infty}e^{-\bruch{1}{\bruch{1}{n}}} [/mm] $$
$$ [mm] =\limes_{n\rightarrow\infty}e^{-\bruch{1}{\bruch{1}{n}}} [/mm] $$
$$ [mm] =\limes_{n\rightarrow\infty}e^{-n} [/mm] $$
$$ =0 $$

Marius

Bezug
                
Bezug
Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Fr 02.01.2009
Autor: JMW

Hi, danke für die Erklärung. Aber ich blicke da nicht so recht durch. Wieso muss ich es von linksseitig und rechtsseitig betrachten. Und [mm] \bruch{1}{\infty} [/mm] ist für mein Verständnis immer gegen 0 ob man es jetzt von rechts betrachtet oder von links.

Bezug
                        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 Fr 02.01.2009
Autor: Marcel

Hallo,

die Aufgabe ist falsch formuliert, sie sollte so heißen:
Prüfen Sie ob $ [mm] \limes_{x\rightarrow 0} e^{-\bruch{1}{x}} [/mm] $ existiert.

Dieser Grenzwert existiert genau dann, wenn für jede Folge [mm] $(x_n)_{n \in \IN}$ [/mm] in [mm] $\IR \setminus \{0\}$ [/mm] gilt, dass aus [mm] $x_n \to [/mm] 0$ ($n [mm] \to \infty$) [/mm] folgt, dass auch [mm] $(e^{-1/x_n})_{n \in \IN}$ [/mm] konvergiert. (Warum? Beweis?)

Letzteres ist genau dann der Fall, wenn für zwei beliebige Folgen [mm] $(x_n)_{n \in \IN}$ [/mm] und [mm] $(y_n)_{n \in \IN}$ [/mm] in [mm] $\IR \setminus\{0\}$, [/mm] mit [mm] $x_n \to [/mm] 0$ und [mm] $y_n \to [/mm] 0$ ($n [mm] \to \infty$), [/mm] folgt, dass [mm] $a:=\lim_{n \to \infty} e^{-1/x_n}$ [/mm] und [mm] $b:=\lim_{n \to \infty}e^{-1/y_n}$ [/mm] existieren und dann auch $a=b$ gilt. (Warum? Beweis?)

Mit dem Tipp oben, also [mm] $x_n=-1/n$ [/mm] und [mm] $y_n=1/n$, [/mm] erkennst Du dann, dass [mm] $\limes_{x\rightarrow 0} e^{-\bruch{1}{x}}$ [/mm] nicht existiert.

Nebenbei:
Wenn man $x [mm] \to [/mm] 0$ durch $x [mm] \to [/mm] 0^+$ ersetzt (d.h. $0 < x [mm] \to [/mm] 0$), dann existiert der Grenzwert allerdings. (Gleiches gilt für $x [mm] \to [/mm] 0^-$, sofern der Grenzwert [mm] $\infty$ [/mm] zugelassen ist.)

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]