Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Man zeige:
[mm] \limes_{n\rightarrow\infty} [/mm] (1+ [mm] \bruch{1}{n^{2}})^{n}= [/mm] 1
|
Also ich bin wie folgt vorgegangen:
[mm] \limes_{n\rightarrow\infty} [/mm] (1+ [mm] \bruch{1}{n^{2}})^{n}= [/mm] 1
= (1+ [mm] \limes_{n\rightarrow\infty} \bruch{1}{n^{2}})^{n}= [/mm] 1
[mm] =(1+0)^{n} [/mm] = 1
dadurch wurde bewiesen das die folge gegen 1 konvergiert.
also ist das so richtig? was anderes ist mir nicht eingefallen. wenn das flasch ist weiß ich echt nicht wie ich es sonst machen kann/muss. danke schon mal für eure antwort
|
|
|
|
Das Ergebnis ist richtig, der Beweis aber FALSCH!
Du hast die Koppelung vom Nenner in der Klammer und vom Exponenten der Klammer nicht beachtet. Da steckt beide Male [mm]n[/mm] dahinter. Du kannst daher nicht bei einem Teil des Termes den Grenzübergang vornehmen, während du an der anderen Stelle [mm]n[/mm] konstant hältst. Nimm einmal folgendes primitives Beispiel:
[mm]\frac{2}{n} \cdot n[/mm]
Jetzt nehme ich den Grenzübergang beim ersten Faktor vor und lasse den zweiten stehen:
[mm]\lim_{n \to \infty}~\left( \frac{2}{n} \cdot n \right) = \left( \lim_{n \to \infty}~ \frac{2}{n} \right) \cdot n = 0 \cdot n = 0[/mm]
Das ist aber offensichtlich Unfug; denn die Folge [mm]\frac{2}{n} \cdot n[/mm] ist konstant 2. Also ist auch ihr Grenzwert 2.
Mit deiner Argumentation käme ja auch bei
[mm]\lim_{n \to \infty}~\left( 1 + \frac{1}{n} \right)^n[/mm]
als Grenzwert 1 heraus. Dabei ist der Grenzwert dieser Folge bekanntlich die Eulersche Zahl [mm]\operatorname{e}[/mm]. Und die steckt auch bei deiner Aufgabe dahinter. Beachte:
[mm]\left( 1 + \frac{1}{n^2} \right)^n = \left( \left( 1 + \frac{1}{n^2} \right)^{n^2} \right)^{\frac{1}{n}}[/mm]
Und jetzt genügt es eigentlich zu wissen, daß die [mm]n[/mm]-te Wurzel (das ist das letzte hoch [mm]\frac{1}{n}[/mm]) die Anordnung erhält. Und unter der [mm]n[/mm]-ten Wurzel steht eine Folge, die streng monoton steigt und somit nach unten durch das erste Folgenglied beschränkt ist, während sie nach oben durch [mm]\operatorname{e}[/mm] beschränkt ist (gröbere Schranken tun's auch). Diese Dinge sind aus der Theorie der Eulerschen Zahl bekannt. Jetzt mußt du in
[mm]2^{\frac{1}{n}} \leq \left( \left( 1 + \frac{1}{n^2} \right)^{n^2} \right)^{\frac{1}{n}} \leq \operatorname{e}^{\frac{1}{n}}[/mm]
den Grenzübergang [mm]n \to \infty[/mm] durchführen.
|
|
|
|
|
danke für deine antwort aber das aller letzte verstehe ich nicht.was soll ich da noch machen?irgendwie ist mir nicht klar wie das gehen soll.kannst du mir das nicht erklären? muss das auch noch mit - machen :-(
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:36 Mi 15.11.2006 | Autor: | Sashman |
Moin chilavert!
> danke für deine antwort aber das aller letzte verstehe ich
> nicht.was soll ich da noch machen?irgendwie ist mir nicht
> klar wie das gehen soll.kannst du mir das nicht erklären?
> muss das auch noch mit - machen :-(
Sagt dir das Sandwichlemma etwas??
Sind [mm] a_n,b_n [/mm] Folgen mit [mm] \limes a_n=\limes b_n=a [/mm] und [mm] a_n\le c_n\le b_n [/mm] ab einem [mm] n_0\in\IN [/mm] dann folgt [mm] \limes c_n [/mm] =a.
Also hast du nach Leopolds Ausführungen nur noch zu zeigen, dass
[mm] $\limes_{n\to\infty}\wurzel[n]{2}=\limes_{n\to\infty}\wurzel[n]{e}=1$
[/mm]
ist.
MfG
Sashman
|
|
|
|