www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "VK 13 Analysis I FH Reg" - Konvergenz-Kriterien
Konvergenz-Kriterien < VK 13 Analysis I FH < Universität < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "VK 13 Analysis I FH Reg"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz-Kriterien: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 18:27 Di 11.12.2007
Autor: Sajuri

Aufgabe
Welche der folgenden Reihen konvergiert, konvergiert absolut oder divergiert? [mm] k\in\IN [/mm]

a) [mm] \summe_{k=1}^{\infty}\vektor{2k\\ k}^{-1} [/mm]

b) [mm] \summe_{k=1}^{\infty}\bruch{k+4}{2k^2-3k+3} [/mm]

Hallo zusammen!

Mit diesen Aufgaben komme ich nicht klar.
Ich habe schon alles probiert, klappt  aber nichts
a) Hier habe ich versucht umzuformen und habe gekriegt, dass es überhaupt nicht Reihe.
[mm] \vektor{2k\\ k}^{-1} [/mm] = [mm] \bruch{2k!}{k!*(2k-k!)}^{-1}=1^{-1}=1 [/mm]
b) mit Quotienten-Kriterium keine Aussage möglich, weil [mm] |\bruch{a_{k+1}}{a_{k}}|=1 [/mm]

Bitte helft mir




        
Bezug
Konvergenz-Kriterien: Doppelpost
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:18 Di 11.12.2007
Autor: Loddar

Hallo Sajuri!


Bitte keine Doppelposts hier einstellen. Du hast diese Frage bereits hier gestellt und sogar beantwortet bekommen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "VK 13 Analysis I FH Reg"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]