www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Zahlen
Komplexe Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Definition
Status: (Frage) beantwortet Status 
Datum: 04:14 Do 18.02.2016
Autor: sonic5000

Hallo,
ich bin gerade dabei mich mit komplexen Zahlen zu beschäftigen. Dazu habe ich mir ein paar Notizen gemacht und wollte euch fragen ob die Formulierungen so korrekt sind...

1. Jede rationale Zahl lässt sich durch einen Bruch mit einem ganzzahligen Nenner und einem ganzzahligem Zähler darstellen. Jede dieser Zahl hat eine periodische Dezimalbruchentwicklung.

2. Die reellen Zahlen sind die Erweiterung der rationalen um die irrationalen Zahlen. Es gibt algebraisch irrationale und transzendent irrationale Zahlen. Die Dezimalbruchentwicklung der irrationalen Zahlen sind immer nichtperiodisch und nicht endlich.

3. Jede algebraische Zahl lässt sich durch die Nullstellen eines Polynoms mit ganzzahligen Koeffizienten darstellen. Darunter sind die algebraisch rationalen und die algebraisch irrationalen Zahlen aber nicht die transzendent irrationalen Zahlen.

4. Nun gibt es Polynomgleichungen mit ganzzahligem Koeffizient die nicht lösbar sind, weil eine Wurzel aus einer negativen Zahl gezogen werden soll. Sie sind also im reellen nicht lösbar. So werden die reellen Zahlen um die komplexen Zahlen erweitert damit man sozusagen auch die imaginären Lösungen dieser Polynome findet.

Ist das so alles korrekt formuliert?

        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:31 Do 18.02.2016
Autor: Event_Horizon

Hallo!

> 1. Jede rationale Zahl lässt sich durch einen Bruch mit
> einem ganzzahligen Nenner und einem ganzzahligem Zähler
> darstellen. Jede dieser Zahl hat eine periodische
> Dezimalbruchentwicklung.

Beispiele:  

[mm] \frac{1}{11}=0,09090909090909090...... [/mm]

[mm] \frac{1}{12}=0,08333333333333333....... [/mm]

[mm] \frac{1}{2}=0,5 [/mm]

Die ersten beiden Fälle haben eine periodische Dezimalbruchentwicklung, wobei auch auffällt, daß die Periode nicht direkt hinter dem Komma anfangen muß.
Den letzten Fall könnte man als periodisch bezeichnen, weil sich gedanklich die 0 wiederholt. Man spricht aber eher von einer endlichen oder abbrechenden Entwicklung.


>  
> 2. Die reellen Zahlen sind die Erweiterung der rationalen
> um die irrationalen Zahlen. Es gibt algebraisch irrationale
> und transzendent irrationale Zahlen. Die
> Dezimalbruchentwicklung der irrationalen Zahlen sind immer
> nichtperiodisch und nicht endlich.

Aha, "nichtperiodisch und nicht endlich". Das ist das Gegenteil von "periodisch oder endlich", was du oben hättest schreiben können.

(Die Aussage hier ist richtig)

>  
> 3. Jede algebraische Zahl lässt sich durch die Nullstellen
> eines Polynoms mit ganzzahligen Koeffizienten darstellen.
> Darunter sind die algebraisch rationalen und die
> algebraisch irrationalen Zahlen aber nicht die transzendent
> irrationalen Zahlen.

[ok]

>  
> 4. Nun gibt es Polynomgleichungen mit ganzzahligem
> Koeffizient die nicht lösbar sind, weil eine Wurzel aus
> einer negativen Zahl gezogen werden soll. Sie sind also im
> reellen nicht lösbar. So werden die reellen Zahlen um die
> komplexen Zahlen erweitert damit man sozusagen auch die
> imaginären Lösungen dieser Polynome findet.

Da ist was wahres dran, aber das bedeutet, daß die komplexen Zahlen eine Erweiterung der algebraischen Zahlen sind. Das ist aber zu wenig, sie sind eine Erweiterung der reellen Zahlen. Im Prinzip kannst du das lösen, indem du jede reelle Zahl als Koeffizient zulässt. Beispielsweise mit der transzendenten Zahl [mm] \pi: [/mm]

[mm] x^2+\pi=0 \Rightarrow x=\pm i\pi [/mm]


Bezug
                
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:37 Do 18.02.2016
Autor: Chris84


> Hallo!
>  
> > 1. Jede rationale Zahl lässt sich durch einen Bruch mit
> > einem ganzzahligen Nenner und einem ganzzahligem Zähler
> > darstellen. Jede dieser Zahl hat eine periodische
> > Dezimalbruchentwicklung.
>  
> Beispiele:  
>
> [mm]\frac{1}{11}=0,09090909090909090......[/mm]
>  
> [mm]\frac{1}{12}=0,08333333333333333.......[/mm]
>  
> [mm]\frac{1}{2}=0,5[/mm]
>  
> Die ersten beiden Fälle haben eine periodische
> Dezimalbruchentwicklung, wobei auch auffällt, daß die
> Periode nicht direkt hinter dem Komma anfangen muß.
>  Den letzten Fall könnte man als periodisch bezeichnen,
> weil sich gedanklich die 0 wiederholt. Man spricht aber
> eher von einer endlichen oder abbrechenden Entwicklung.
>  
>
> >  

> > 2. Die reellen Zahlen sind die Erweiterung der rationalen
> > um die irrationalen Zahlen. Es gibt algebraisch irrationale
> > und transzendent irrationale Zahlen. Die
> > Dezimalbruchentwicklung der irrationalen Zahlen sind immer
> > nichtperiodisch und nicht endlich.
>  
> Aha, "nichtperiodisch und nicht endlich". Das ist das
> Gegenteil von "periodisch oder endlich", was du oben
> hättest schreiben können.
>  
> (Die Aussage hier ist richtig)
>  
> >  

> > 3. Jede algebraische Zahl lässt sich durch die Nullstellen
> > eines Polynoms mit ganzzahligen Koeffizienten darstellen.
> > Darunter sind die algebraisch rationalen und die
> > algebraisch irrationalen Zahlen aber nicht die transzendent
> > irrationalen Zahlen.
>  
> [ok]
>  
> >  

> > 4. Nun gibt es Polynomgleichungen mit ganzzahligem
> > Koeffizient die nicht lösbar sind, weil eine Wurzel aus
> > einer negativen Zahl gezogen werden soll. Sie sind also im
> > reellen nicht lösbar. So werden die reellen Zahlen um die
> > komplexen Zahlen erweitert damit man sozusagen auch die
> > imaginären Lösungen dieser Polynome findet.
>  
> Da ist was wahres dran, aber das bedeutet, daß die
> komplexen Zahlen eine Erweiterung der algebraischen Zahlen
> sind. Das ist aber zu wenig, sie sind eine Erweiterung der
> reellen Zahlen. Im Prinzip kannst du das lösen, indem du
> jede reelle Zahl als Koeffizient zulässt. Beispielsweise
> mit der transzendenten Zahl [mm]\pi:[/mm]
>  
> [mm]x^2+\pi=0 \Rightarrow x=\pm i\pi[/mm]
>  

Kleine Anmerkung: Die Loesung muss natuerlich

[mm] $x=\pm [/mm] i [mm] \sqrt{\pi}$ [/mm]

lauten :)


Bezug
                
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:49 Do 18.02.2016
Autor: sonic5000

Ja, da hast Du natürlich Recht... Danke für die genauen Antworten! Das hilft mir sehr weiter...


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]