www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Komplexe Struktur Vektorraum
Komplexe Struktur Vektorraum < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Struktur Vektorraum: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 16:51 So 17.04.2016
Autor: Manu271

Aufgabe
Sei V ein [mm] \IR [/mm] - Vektorraum. Eine komplexe Struktur auf V ist ein Endomorphismus J: V [mm] \to [/mm] V mit [mm] J^2 [/mm] = -id, wobei id die identische Abbildung V [mm] \to [/mm] V ist.
Sei ein [mm] \IR [/mm] - Vektorraum mit einer komplexen Struktur J gegeben.

a) Zeigen Sie, dass V mit der Skalarmultiplikation (a+bi)*v := av + bJ(v) zu einem [mm] \IC [/mm] - Vektorraum wird.

b) Sei V endlich dimensional (dim V=n). Zeigen Sie, dass dann [mm] dim_\IR [/mm] V gerade ist.

Hallo,
im Folgenden geht es nur um den Aufgabenteil b).
Bei obiger Aufgabe habe ich leider etwas Probleme.
Ich hätte wie folgt argumentiert:
[mm] J^2 [/mm] = -id
<=>  J(J(v))=-v, für alle v [mm] \in [/mm] V.
Da J ein Endomorphismus ist, kann J auch als Matrix dargestellt werden.
Sei A die darstellende Matrix von J:
A*A*v=-v
<=> [mm] v(A^2+I_n)=0 (I_n [/mm] sei die Einheitsmatrix)
=> [mm] A^2=-I_n [/mm]
=> [mm] A=i*I_n [/mm]
Dann hätte ich gesagt, [mm] Dim_\IR [/mm] V = n, da die dimension des Kerns von [mm] i*I_n [/mm] = 0 und die des Bildes von [mm] i*I_n [/mm] = n ist.
Offensichtlich habe ich so nicht gezeigt das die Dimension von V gerade ist.
Ich hoffe ihr könnt mir sagen wo mein Fehler liegt.

LG

        
Bezug
Komplexe Struktur Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 So 17.04.2016
Autor: Leopold_Gast

Ich würde auf [mm]J^2 = - \operatorname{id}[/mm] die Determinante anwenden. Beachte den Determinantenmultiplikationssatz [mm]\det( \varphi \circ \psi) = \det(\varphi) \cdot \det(\psi)[/mm] sowie [mm]\det( \lambda \varphi) = \lambda^n \det( \varphi)[/mm] für Endomorphismen [mm]\varphi, \psi[/mm] von [mm]V[/mm] und [mm]\lambda \in \mathbb{R}[/mm]. Und beachte: wir sind hierbei in [mm]\mathbb{R}[/mm].

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]