www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Komplexe DifFormen, Stokes
Komplexe DifFormen, Stokes < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe DifFormen, Stokes: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:25 Mo 06.09.2010
Autor: GodspeedYou

Aufgabe
Sei G ein Gebiet in [mm] \IC. [/mm]  Der Rand von G sei ein postiv orientierter geschlossener Pfad und [mm] \omega [/mm] eine auf [mm] \overline{A} [/mm] stetig differenzierbare 1-Form. Dann gilt

[mm] \integral_{\delta G}^{}{\omega} [/mm] = [mm] \integral_{G}^{}{d \omega} [/mm]

In meiner VL zu komplexer analysis II kam dieser Satz vor, also der Satz von Stokes.

Leider ist hier nichts genaues zu den vorraussetzungen erwähnt, also ob es sich hierbei um eine komplexe differentialform handeln kann oder bloß um reelle.
Auch ist mir nicht so ganz klar, wie dieses Integral definiert ist -wird die differentialform komponentenweise integriert; also werden Real und Imaginärteil der DifForm als reelle DifFormen integriert?
Das Kurvenintegral auf der linken Seite ist wohl einfach ein komplexes Kurvenintegral, oder?

Vielen Dank für alle Antworten und Hinweise



        
Bezug
Komplexe DifFormen, Stokes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:46 Di 07.09.2010
Autor: GodspeedYou

Ok, habe die Frage für mich beantwortet.

Man kommt zu vernünftigen Ergebnissen, wenn man das Integral über komplexe Differentialformen w komponentenweise definiert, also mittels I(w) = I(Re(w)) + i*I(Im(w))
Und da die äußere Ableitung [mm] \IC [/mm] - linear ist, erhält man recht einfach aus der reellen die komplexe Variante d. Satzes von Stoke.

Auch interessant ist, dass für Differentialformen w, die sich als fdz, wo f stetig mit komplexen werten ist (und dz = dx + idy ist), das Integral der Differentialform über das Bild einer stkw. glatten, doppelpunktfreien Kurve, mit dem komplexen Kurvenintegral von f über diese Kurve übereinstimmt (was die Definition w.o. sinnvoll macht).

Bezug
        
Bezug
Komplexe DifFormen, Stokes: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mi 08.09.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]