www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Kompaktheit
Kompaktheit < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompaktheit: Korrektur
Status: (Frage) beantwortet Status 
Datum: 11:51 Mi 11.06.2008
Autor: Max1603

Aufgabe
Es sei [mm] A_{0} \supset A_{1} [/mm] .. eine absteigende Folge von nichtleeren, kompakten
Teilmengen eines metrischen Raums. Zeigen Sie, dassd ann  auch
A [mm] :=\limes_{n\rightarrow\infty}\bigcap_{i=1}^{n}A_{n} [/mm]
nichtleer und kompakt ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo alle zusammen, habe folgende Lösung

1) nicht leer

Sei eine Folge [mm] x_{k} [/mm] so gewählt, dass [mm] x_{k}\in A_{k} [/mm]
[mm] \Rightarrow x_{k}\in A_{0} \forall [/mm] k
[mm] \Rightarrow [/mm]  es ex. a [mm] \in A_{0} [/mm] und [mm] x_{k_{j}}, [/mm] so dass
[mm] \limes_{j\rightarrow\infty}x_{k_{j}}=a [/mm]
Da aber [mm] \forall [/mm] k [mm] j_{0} [/mm] existiert : [mm] x_{k_{j}} \in A_{k} \forall j\ge j_{0}, [/mm] folgt a [mm] \in A_{k} \forall [/mm] k [mm] \in \IN [/mm]
und somit a [mm] \in \limes_{n\rightarrow\infty}\bigcap_{i=1}^{n}A_{n} [/mm]

2)Kompakt
Da [mm] \limes_{n\rightarrow\infty}\bigcap_{i=1}^{n}A_{n} [/mm] abg. und [mm] \limes_{n\rightarrow\infty}\bigcap_{i=1}^{n}A_{n}\subset A_{0}, [/mm] folgt nun mit Kompaktheit von [mm] A_{0}, [/mm] dass [mm] \limes_{n\rightarrow\infty}\bigcap_{i=1}^{n}A_{n} [/mm] kompakt ist

fertig!!!

Kann mir bitte sagen, ob dies richtig ist??
Dankeschön

        
Bezug
Kompaktheit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 Mi 11.06.2008
Autor: Somebody


> Es sei [mm]A_{0} \supset A_{1}[/mm] .. eine absteigende Folge von
> nichtleeren, kompakten
>  Teilmengen eines metrischen Raums. Zeigen Sie, dassd ann  
> auch
>  A [mm]:=\limes_{n\rightarrow\infty}\bigcap_{i=1}^{n}A_{n}[/mm]
>  nichtleer und kompakt ist.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo alle zusammen, habe folgende Lösung
>  
> 1) nicht leer
>  
> Sei eine Folge [mm]x_{k}[/mm] so gewählt, dass [mm]x_{k}\in A_{k}[/mm]
>  
> [mm]\Rightarrow x_{k}\in A_{0} \forall[/mm] k
> [mm]\Rightarrow[/mm]  es ex. a [mm]\in A_{0}[/mm] und [mm]x_{k_{j}},[/mm] so dass
>  [mm]\limes_{j\rightarrow\infty}x_{k_{j}}=a[/mm]
>  Da aber [mm]\forall[/mm] k [mm]j_{0}[/mm] existiert : [mm]x_{k_{j}} \in A_{k} \forall j\ge j_{0},[/mm]
> folgt a [mm]\in A_{k} \forall[/mm] k [mm]\in \IN[/mm]
>  und somit a [mm]\in \limes_{n\rightarrow\infty}\bigcap_{i=1}^{n}A_{n}[/mm]
>  
> 2)Kompakt
>  Da [mm]\limes_{n\rightarrow\infty}\bigcap_{i=1}^{n}A_{n}[/mm] abg.
> und
> [mm]\limes_{n\rightarrow\infty}\bigcap_{i=1}^{n}A_{n}\subset A_{0},[/mm]
> folgt nun mit Kompaktheit von [mm]A_{0},[/mm] dass
> [mm]\limes_{n\rightarrow\infty}\bigcap_{i=1}^{n}A_{n}[/mm] kompakt
> ist
>  
> fertig!!!
>  
> Kann mir bitte sagen, ob dies richtig ist??

Meiner Meinung nach ist dies richtig. - Wo und weshalb bist Du Dir selbst der Richtigkeit dieser Überlegung unsicher? - Natürlich ist dies hier sehr abgekürzt geschrieben: auf Papier würde ich schon noch etwas näher an vollständige Sätze heranzukommen versuchen ;-)

Bezug
                
Bezug
Kompaktheit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:50 Mi 11.06.2008
Autor: Max1603

erstmal dankeschön :))

ich war mir an der folgenden Stelle nicht sicher
und somit a [mm] \in \limes_{n\rightarrow\infty}\bigcap_{i=1}^{n}A_{n} [/mm]

wegen unendlich halt

Bezug
                        
Bezug
Kompaktheit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:18 Do 12.06.2008
Autor: Somebody


> erstmal dankeschön :))
>  
> ich war mir an der folgenden Stelle nicht sicher
>  und somit a [mm]\in \limes_{n\rightarrow\infty}\bigcap_{i=1}^{n}A_{n}[/mm]
>  
> wegen unendlich halt

Diese Schreibweise [mm] $\limes_{n\rightarrow\infty}\bigcap_{i=1}^{n}A_{n}$ [/mm] ist, wie mir erst nachträglich auffällt, ziemlich unsinnig: weil der Index $i$ im Bindungsbereich von [mm] $\bigcap$ [/mm] gar nicht vorkommt.
Vermutlich ist [mm] $\limes_{n\rightarrow\infty}\bigcap_{i=1}^{n}A_{i}$ [/mm] gemeint. Bei einer inklusionsmonoton fallenden Folge von Mengen [mm] $A_n$ [/mm] ist dies aber das selbe wie [mm] $\lim_{n\rightarrow \infty}A_n$ [/mm] bzw. wie [mm] $\bigcap_{n=1}^\infty A_n$. [/mm] Auch nicht so recht einzusehen ist (für mich), weshalb der Aufgabensteller nicht gleich [mm] $\bigcap_{n=0}^\infty A_n$ [/mm] geschrieben hat.

Ist diese Vorüberlegung richtig, so kann man sagen: Du hast gezeigt, dass für alle [mm] $n\in \IN$ [/mm] der Limes $a$ in [mm] $A_n$ [/mm] liegt. Dies besagt nichts anderes als [mm] $a\in \bigcap_{n\in \IN}A_n$. [/mm]

Bezug
                                
Bezug
Kompaktheit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:26 Do 12.06.2008
Autor: Max1603

:))ja du hast Recht. Ich habe es bei mir auch so gemacht wie du das meintes.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]