www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Kombinatorische Äquivalenz
Kombinatorische Äquivalenz < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorische Äquivalenz: Denkanstoss/Tipp benötigt
Status: (Frage) beantwortet Status 
Datum: 12:17 Mi 30.10.2013
Autor: fl0nk

Aufgabe
Zeigen Sie, ein Polytop in [mm] \IR^{3} [/mm] , bei dem je zwei Ecken benachbart sind (d.h. durch eine Kante verbunden), ist ein Tetraeder (d.h. kombinatorisch äquivalent zum Polytop mit den Ecken (0,0,0), (1,0,0), (0,1,0), (0,0,1)).

Da ich zur Zeit meine erste Veranstaltung höre, die sich ausschließlich mit (konvexer) Geometrie beschäftigt, komme ich irgendwie auf keinen grünen Zweig.

Was mich ein wenig verwirrt ist die Aussage "je zwei Ecken sind benachbart".
Bei einem Tetraeder hat doch jede Ecke zwei Nachbarn oder?
Obige Aussage klingt für mich so, als dürften die Ecken des zum Tetraeder äquivalenten Polytop nur je einen Nachbar haben.
Hab ich da irgendwas missverstanden?

Und um kombinatorische Äquivalenz zu zeigen, muss ich ja eine Bijektion zwischen den Seiten des Polytops und des Tetraeders finden, oder?

Wie gesagt stehe ich hier ein wenig auf dem Schlauch und sehe wahrscheinlich den Wald vor lauter Bäumen nicht. Daher würde ich mich über Tipps von euch sehr freuen.

Zur Info: Konzepte die "viel" Vorwissen erfordern nützen hier wohl nichts, da die Vorlesung erst zwei Termine alt ist.

Vielen Dank im Voraus für eure Tipps.

        
Bezug
Kombinatorische Äquivalenz: Antwort
Status: (Antwort) fertig Status 
Datum: 10:20 Fr 01.11.2013
Autor: rainerS

Hallo!

> Zeigen Sie, ein Polytop in [mm]\IR^{3}[/mm] , bei dem je zwei Ecken
> benachbart sind (d.h. durch eine Kante verbunden), ist ein
> Tetraeder (d.h. kombinatorisch äquivalent zum Polytop mit
> den Ecken (0,0,0), (1,0,0), (0,1,0), (0,0,1)).
>  Da ich zur Zeit meine erste Veranstaltung höre, die sich
> ausschließlich mit (konvexer) Geometrie beschäftigt,
> komme ich irgendwie auf keinen grünen Zweig.
>  
> Was mich ein wenig verwirrt ist die Aussage "je zwei Ecken
> sind benachbart".
>  Bei einem Tetraeder hat doch jede Ecke zwei Nachbarn
> oder?

Nein: drei. Diese beiden Aussagen haben zunächst nichts miteinander zu tun!

"Je zwei Ecken sind benachbart" bedeutet, dass je zwei beliebige Ecken mit einer Kante verbunden sind.

  Viele Grüße
     Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]