www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Kombinationen Mehrfachbelegung
Kombinationen Mehrfachbelegung < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinationen Mehrfachbelegung: Info
Status: (Frage) beantwortet Status 
Datum: 14:41 Sa 08.05.2010
Autor: kegel53

Aufgabe
Gibt es eine Formel zur Berechnung der Anzahl aller möglichen Kombinationen k-ter Ordnung aus n verschiedenen Elementen,
wobei eine Mehrfachbelegung von Elementen erlaubt ist??

Sei zum Beispiel die Menge [mm] M=\{a,b,c,d\} [/mm] vorgegeben.
Dann ist die Anzahl aller möglichen Kombinationen 3-ter Ordnung gerade [mm] {4\choose3}=4 [/mm] , lässt man allerdings eine Mehrfachbelegung der Elemente zu ergeben sich 20 mögliche Kombinationen. Ich würd nur gern wissen, ob es dafür dann auch eine Berechnungs-Formel ähnlich dem Binomialkoeffizieneten gibt!

Vielen Dank für die Info.

        
Bezug
Kombinationen Mehrfachbelegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:03 Sa 08.05.2010
Autor: kegel53

Niemand ne Idee, ob es so ne Formel gibt oder nicht??
Wär klasse, wenn jemand was weiß! Danke mal.

Bezug
        
Bezug
Kombinationen Mehrfachbelegung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:03 So 09.05.2010
Autor: mathfunnel

Hallo kegel,

ich vermute, dass Du den Ausdruck [mm] ${k+n-1\choose n}$ [/mm] suchst.

In Deinem Beispiel ($k=4$, $n = 3$) ist [mm] ${4+3-1\choose 3} [/mm] = 20$.

Gruß mathfunnel


Bezug
                
Bezug
Kombinationen Mehrfachbelegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:26 So 09.05.2010
Autor: kegel53

Genau den hab ich gesucht! Vielen Dank!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]