www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Kolmogorov-Smirnov-Test
Kolmogorov-Smirnov-Test < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kolmogorov-Smirnov-Test: kritische Werte (exakt, appr.)
Status: (Frage) überfällig Status 
Datum: 16:59 Di 10.07.2012
Autor: dennis2

Aufgabe
Vergleiche die exakten kritischen Werte des zweiseitigen Kolmogorov-Smirnov-Tests für [mm] $\alpha=0,05$ [/mm] mit den approximativen Werten, die sich über die asymptotische Verteilung ergeben und zwar für $m=10, n=15$ und $m=15, n=20$.


[mm] \textit{Hallo, liebe Leute!} [/mm]

Ist es ausreichend, wenn ich Euch zunächst lediglich meine Ergebnisse gebe? Falls diese schon stimmen, erspare ich mir viel Schreibarbeit und Euch viel Lesearbeit. :-)


Also für $m=10, n=15$ habe ich als [mm] \textbf{exakten} [/mm] kritischen Wert [mm] $c_{ex}=1/2$ [/mm] heraus und als [mm] \textbf{approximativen} [/mm] kritischen Wert [mm] $c_{app}=0,56$. [/mm]

Für $m=15, n=20$ habe ich [mm] $c_{ex}=13/30$ [/mm] und [mm] $x_{app}0,46$. [/mm]


Viele Grüße!

Dennis

        
Bezug
Kolmogorov-Smirnov-Test: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:29 Di 10.07.2012
Autor: dennis2

Ich habe die kritischen Werte berechnet, indem ich mich an folgender asymptotischen Verteilung der Kolmogrov-Smirnov-Teststatistik [mm] $K_{m,n}$ [/mm]  orientiert habe (so zum Beispiel zu finden in Büning/ Trenkler):

[mm] $\lim\limits_{m,n\to\infty}P\left(K_{m,n}\leq \lambda/\sqrt{N'}\right)=Q_1(\lambda)$ [/mm] mit

[mm] $Q_1(\lambda)=1-2\sum\limits_{k=1}^{\infty}(-1)^{k-1}e^{-2k^2\lambda^2}$ [/mm] und

$N'=mn/(m+n)$


-------

In der Vorlesung hatten wir nach meiner Mitschrift:

[mm] $\lim\limits_{m,n\to\infty}P\left(\frac{d}{\sqrt{mn}\sqrt{m+n}}K_{m,n}<\lambda\right)=1-2\sum\limits_{k=1}^{\infty}(-1)^{k-1}\exp\left(-2k^2\lambda^2\right)$, [/mm] wobei d der größte gemeinsame Teiler von m und n sein soll.


Irgendwie sehe ich nicht, dass das identisch ist.

Das [mm] $\frac{d}{\sqrt{mn}\sqrt{m+n}}$ [/mm] irritiert mich. Wenn ich das umforme, habe ich doch die Wahrscheinlichkeit von

[mm] $K_{m,n}<\frac{\lambda\sqrt{mn}\sqrt{m+n}}{d}$, [/mm] aber das ist doch nicht das Gleiche wie die Wahrscheinlichkeit von [mm] $K_{m,n}\leq\lambda/\sqrt{N'}$ [/mm] - oder vielleicht doch?!



Bezug
                
Bezug
Kolmogorov-Smirnov-Test: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Do 12.07.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Kolmogorov-Smirnov-Test: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Do 12.07.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]