Körperberechnung Kugel < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Hallo erstmal!
Ich sitze hier jetzt schon seit einer Stune an so einer dollen Aufgabe aus meinem Mathebuch, die Aufgabe lautet folgendermaßen:
Die Kugel auf einer Kirchturmspitze hat einen Durchmesser von 38cm. Sie wird mit 10g Gold vergoldet. 1cm³ Gold wiegt 19.3g. Wie dick ist die Goldschicht?
Also ich hab jetzt erstmal das Volumen der gesamten Kugel ausgerechnet, aber irgendwie hab ich jetzt keine Ahnung wie ich weiter vorgehen soll, da wir nur die Formeln für den Oberflächeninhalt und das Volumen kennen und beide sind irgendwie meiner Meinung nach für den weiteren Lösungsweg nicht zu gebrauchen.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:56 Sa 09.04.2005 | Autor: | Max |
Hallo EiskalterEngel,
dir ein herzliches
Überleg dir doch mal, was für eine Form die Goldschicht hat (wirklich nur die Goldschicht!). Dann kannst du nämlich das zugehörige Volumen errechen und über die Masse und Dichte auf die Dicke der Goldschicht schließen...
Max
|
|
|
|
|
Also die Goldschicht ist ja dann ein "Ring" also müsste man doch den ganzen radius minus den radius der goldschicht nehmen. nur ich hab keine ahnung wie man die dicke der goldschicht dann berechnen soll!
|
|
|
|
|
Hallo!
Überleg dir erstmal, wieviele [mm] $cm^3$ [/mm] Gold du hast. Was für ein Volumen hat die Kugel dann insgesamt? Welchen Radius musst du haben, um eine Kugel von genau diesem Volumen zu bekommen?
Gruß, banachella
|
|
|
|
|
Ja also soweit war ich auch schon!
Also, dass das dann 0,518cm³ Gold sind, das Volumen insgesamt 28730,91cm³ und der Radius dann 19cm sein muss. Nur irgendwie habe ich keine Formel, wo ich die ganzen Zahlen einsetzen kann.
|
|
|
|
|
Also ich hatte es jetzt irgendwie versucht indem ich einfach: 0.518cm³=4/3*r³* [mm] \pi [/mm] gerechnet habe. Naja ich dachte auch da müsste die Lösung rauskommen, aber irgendwie scheint mir das Ergebnis sehr unlogisch!
|
|
|
|
|
> Also ich hatte es jetzt irgendwie versucht indem ich
> einfach: 0.518cm³=4/3*r³* [mm]\pi[/mm] gerechnet habe. Naja ich
> dachte auch da müsste die Lösung rauskommen, aber irgendwie
> scheint mir das Ergebnis sehr unlogisch!
Hallo!
Wenn Du so rechnest: [mm] $V_{Gold}=0,518=\frac{4}{3}\pi*r^3$, [/mm] nimmst Du ja an, daß die Goldschicht die Form einer Kugel hat. Das ist aber wohl kaum der Fall, die Form, die die Goldschicht hat, ist logischerweise eine Kugelschale.
Um das Volumen einer Kugelschale zu berechnen, nehmen wir erstmal die "große" Kugel außen her: [mm] $V_{groß}=\frac{4}{3}\pi*r^3=38 cm^3$.
[/mm]
(Daraus kannst Du nun auch den Radius der Kugel auf der Kirchturmspitze ausrechnen).
Nennen wir die Dicke der Goldschicht jetzt einfach mal d.
Dann müssen wir von unserem großen Volumen oben ja noch die "kleine" Kugel unter der Goldschicht abziehen.
Die innere Kugel hat jetzt wenn man sich das mal so vorstellt, ja den Radius r-d, das heißt, ihr Volumen ist [mm] $V_{klein}=\frac{4}{3}\pi*(r-d)^3$.
[/mm]
Unsere Goldschicht hat dann insgesamt das Volumen [mm] $V_{Gold}=V_{groß}-V_{klein}=\frac{4}{3}\pi*(r^3-(r-d)^3)=0.518 cm^3$.
[/mm]
Das einzige, was in dieser Gleichung unbekannt ist, ist das d, die Dicke der Goldschicht, eben genau das, was wir suchen.
Kommst Du nun alleine weiter?
Gruß,
Christian
|
|
|
|
|
okay danke!
aber irgendwie stellt sich jetzt ein erneutes problem:)
liegt wahrscheinlich daran, dass ich jetzt schon so lange daran sitze!
also bis jetzt hab ich dann mal:
4/3* [mm] \pi*(19³-(19-d)³)=0,518cm³
[/mm]
6859-(6859-d³)=0,124cm³
so und soweit mein kopf nich eh schon von mathezahlen voll ist, meine ich, dass ich jetzt aud dem minus in der klammer ein plus machen müsste und dann halt 2 mal durch 6859teilen und dann die 3te wurzel aus der zahl ziehen müsste, aber irgendwie kommt da bei mir ne negativzahl raus....
|
|
|
|
|
Also die lösung is 0,002mm
|
|
|
|
|
Hallo,
die Endformel sieht so aus:
[mm]
\begin{gathered}
\frac{4}
{3}\;\pi \;\left( {r^{3} \; - \;\left( {r\; - \;d} \right)^{3} } \right)\; = \;V \hfill \\
\Rightarrow \;d\; = \;r\; - \;\sqrt[3]{{r^3 \; - \;\frac{{3V}}
{{4\pi }}}} \hfill \\
\end{gathered} [/mm]
Hier erhalte ich als Ergebnis (r = 19 , V = 0.518) für d = 0,0001 cm
Gruß
MathePower
|
|
|
|
|
Also bei mir kommt da irgendwie dann ein anderes Ergebnis raus!
Aber ich hab jetzt mal ein Lösungsbuch gefunden, die rechnen das folgenermaßen:
[mm] -\bruch{d³}{6} [/mm] * [mm] \pi [/mm] + [mm] \bruch [/mm] {(d+x)³}{6} [mm] =\bruch{10}{19,3} [/mm] cm³
daraus folgt: (d+x)³-d³ [mm] \approx [/mm] 0.9896
daraus folgt:d+x [mm] \approx [/mm] 38,002cm
und daraus folgt dann, dass die goldschicht 0,002mm dick ist.
Aber ich kann nicht nachvollziehen wie man auf dieses Ergebnis mit der Rechnung kommt.
|
|
|
|
|
Hallo,
in der Formel [mm]\frac{\pi } {6}\;\left( {\left( {d\; + \;x} \right)^{3} \; - \;d^{3} } \right)\; = \;\frac{{10}} {{19,3}}[/mm] ist d der Durchmesser, also d = 2r. Konkret heißt das statt 19 mußt Du 38 in die Gleichung einsetzen.
Dann stimmt das Ergebnis mit den 0,002.
Das Volumen der Kugel läßt sich auch nur mit Hilfe des Durchmessers ausdrücken:
[mm]V_{Kugel} \; = \;\frac{4}
{3}\;\pi \;r^{3} \; = \;\frac{4}
{3}\;\pi \;\left( {\frac{d}
{2}} \right)^{3} \; = \;\pi \;\frac{{d^{3} }} {6}[/mm]
Gruß
MathePower
|
|
|
|
|
> Hallo erstmal!
> Ich sitze hier jetzt schon seit einer Stune an so einer
> dollen Aufgabe aus meinem Mathebuch, die Aufgabe lautet
> folgendermaßen:
>
> Die Kugel auf einer Kirchturmspitze hat einen Durchmesser
> von 38cm. Sie wird mit 10g Gold vergoldet. 1cm³ Gold wiegt
> 19.3g. Wie dick ist die Goldschicht?
>
> Also ich hab jetzt erstmal das Volumen der gesamten Kugel
> ausgerechnet, aber irgendwie hab ich jetzt keine Ahnung wie
> ich weiter vorgehen soll, da wir nur die Formeln für den
> Oberflächeninhalt und das Volumen kennen und beide sind
> irgendwie meiner Meinung nach für den weiteren Lösungsweg
> nicht zu gebrauchen.
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
hi,
hier wurde ja schon einiges geschrieben zu dieser frage, da ich das auch grad in mathe gemacht habe, will ich nun mal meinen rechenweg aufzeigen
also 1cm³ Gold wiegt 19,3 g, dann wiegt 10g ,mit dem es vergoldet wird, 0,52cm³ ( dreisatz).
das volumen der kugel vor der vergoldung = [mm] \bruch{4}{3} [/mm] *pi*19³ = 28730,91 cm ³
dieses volumen wird nun durch das volumen der goldschicht erweitert , also um 0,52cm³
neues Volumen= 28731,43cm³
wenn man die formel zur berechnung des flächeninhalts umstellt berechnet man r so: r= [mm] \wurzel[3]{\bruch{3V}{4pi}}=\wurzel[3]{\bruch{3* 28731,43}{4pi}}=19,000114
[/mm]
das zieht man dann vom alten radius ab und dann weiss man wie dick die goldschicht ist, nämlich 0,000114 cm
gruß christopher
|
|
|
|
|
> wie kommst du auf 3V?
Volumen einer [mm] Kugel=\bruch{4}{3}*r³*pi
[/mm]
ziel ist es r zu berechnen, also löst man die formel nach r auf
[mm] V=\bruch{4}{3}*r³*pi [/mm] / :pi
[mm] \bruch{V}{pi}=\bruch{4}{3}*r³ [/mm] / : [mm] \bruch{4}{3}= *\bruch{3}{4} [/mm] durch einen bruch dividiert man, in dem man ihn mit seinem kehrwert mal nimmt
[mm] \bruch{3V}{4pi}=r³
[/mm]
dann noch die drtitte wurzel daraus un fertig
hoffe ich konnte dir helfen
gruß christopher
|
|
|
|
|
Dankeschön durch ein bisschen überlegen hätte ich auch selber draufkommen können;)
|
|
|
|