www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Kettenbruch
Kettenbruch < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kettenbruch: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 09:16 So 27.04.2014
Autor: Leon89

Aufgabe
Darstellung von der Kettenbruchentwicklung von Wurzel (3). Es ist ein unendlicher Kettenbruch. Dann ist x = 1 + (1 / (1 + (1 / 1+x ))). Durch Vereinfachung des rationalen Ausdrucks auf der rechten Seite und der Multiplikation beider Seiten mit 2 +x erhält man 2x + [mm] x^2 [/mm] = 3 + 2x.

Wieso mulitpiziere ich mit 2 + x ? Wie komme ich auf die 2 + x ?




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kettenbruch: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 So 27.04.2014
Autor: felixf

Moin!

> Darstellung von der Kettenbruchentwicklung von Wurzel (3).
> Es ist ein unendlicher Kettenbruch. Dann ist x = 1 + (1 /
> (1 + (1 / 1+x ))). Durch Vereinfachung des rationalen
> Ausdrucks auf der rechten Seite und der Multiplikation
> beider Seiten mit 2 +x erhält man 2x + [mm]x^2[/mm] = 3 + 2x.
>
>   Wieso mulitpiziere ich mit 2 + x ? Wie komme ich auf die
> 2 + x ?

Nun, du Vereinfachst erstmal den rationalen Ausdruck auf der rechten Seite. Dann hast du sowas wie $x = [mm] \frac{f(x)}{g(x)}$ [/mm] mit Polynomen $f, g$. Wenn du das hast, wird $g(x)$ in diesem Fall gerade $2 + x$ sein. Deswegen wird hier mit $2 + x$ multiplizierst, um das ganze als Gleichheit zweier Polynome zu schreiben.

Bei einem anderen Kettenbruch musst du also nicht mit $2 + x$ multiplizieren, sondern mit dem Nenner den du da erhaelst.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]