www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Navigation
 Startseite...
 Suchen
 Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Jordan Messbarkeit
Jordan Messbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordan Messbarkeit: Verständnisproblem Definition
Status: (Frage) beantwortet Status 
Datum: 18:18 Sa 14.07.2012
Autor: halonol

Hallo,

ich brauche Hilfe bei dem Verstehen einer Definition:

Definition: Sei D [mm] \subset \IR^n [/mm] beschränkt und [mm] f:D->\IR [/mm] auch beschränkt. Wir nennen f auf D integrierbar, wenn die Funktion [mm] f^\*:=f*1_D [/mm] auf [mm] Q_D [/mm] integrierbar ist. Dabei ist [mm] Q_D [/mm] der kleinste achsenparallele Quader und [mm] f(n)=\begin{cases} f, & \mbox{für } x \in Q \mbox{ } \\ 0, & \mbox{für } x \in Q_D \mbox{ohne D} \end{cases}. [/mm]

Was ist den der kleinste achsenparallele Quader?

Dann die Definition zur Jordan Messbarkeit:
Definition: Eine beschränkte Menge D [mm] \subset \IR^n [/mm] heißt Jordan messbar, wenn das Integral [mm] \mu(D):= \integral_{D}{1^\* dx}=\integral_{Q_D}{1^\* dx} [/mm] mit [mm] 1^\*:=1*1_D=1_D [/mm] existiert. Die Zahl [mm] \mu(D) [/mm] heißt Inhalt oder Volumen von D.

Was ist dieses [mm] 1_D? [/mm] Kann mir jemand vielleicht ein Beispiel geben zu einer Jordan messbaren Menge und dies an dieser Definition beweisen?

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://matheplanet.com/

        
Bezug
Jordan Messbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:32 Sa 14.07.2012
Autor: fred97


> Hallo,
>  
> ich brauche Hilfe bei dem Verstehen einer Definition:
>  
> Definition: Sei D [mm]\subset \IR^n[/mm] beschränkt und [mm]f:D->\IR[/mm]
> auch beschränkt. Wir nennen f auf D integrierbar, wenn die
> Funktion [mm]f^\*:=f*1_D[/mm] auf [mm]Q_D[/mm] integrierbar ist. Dabei ist
> [mm]Q_D[/mm] der kleinste achsenparallele Quader und
> [mm]f(n)=\begin{cases} f, & \mbox{für } x \in Q \mbox{ } \\ 0, & \mbox{für } x \in Q_D \mbox{ohne D} \end{cases}.[/mm]
>  
> Was ist den der kleinste achsenparallele Quader?


Das ist der Durchschnitt aller achsenparallele Quader, die D enthalten.


>  
> Dann die Definition zur Jordan Messbarkeit:
>  Definition: Eine beschränkte Menge D [mm]\subset \IR^n[/mm] heißt
> Jordan messbar, wenn das Integral [mm]\mu(D):= \integral_{D}{1^\* dx}=\integral_{Q_D}{1^\* dx}[/mm]
> mit [mm]1^\*:=1*1_D=1_D[/mm] existiert. Die Zahl [mm]\mu(D)[/mm] heißt
> Inhalt oder Volumen von D.
>
> Was ist dieses [mm]1_D?[/mm]


[mm] 1_D(x)=1, [/mm] falls x [mm] \in [/mm] D, [mm] 1_D(x)=0, [/mm] falls x [mm] \notin [/mm] D

FRED

> Kann mir jemand vielleicht ein Beispiel
> geben zu einer Jordan messbaren Menge und dies an dieser
> Definition beweisen?
>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  http://matheplanet.com/


Bezug
                
Bezug
Jordan Messbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:04 Sa 14.07.2012
Autor: halonol

Ersteres verstehe ich noch nicht ganz:

Der Definitionsbereich sind ja n-Tupel. Achsenparalelle Quader sind n Intervalle: Zum Beispiel: [mm] [a_1,b_1]x[a_2,b,2]x[a_3,b_3] [/mm] für den [mm] R^3. [/mm] Diese Intervalle kann ich doch nun beliebig klein wählen, ich muss nur gewähleisten, dass immer der Definitionsbereich in jedem Teilintervall meines Quaders liegt. Wäre der Durchschnitt dann nicht immer gleich dem Definitionsbereich?

Bezug
                        
Bezug
Jordan Messbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Mo 16.07.2012
Autor: SEcki


> Der Definitionsbereich sind ja n-Tupel.

Wie meinst du das?

> Achsenparalelle
> Quader sind n Intervalle: Zum Beispiel:
> [mm][a_1,b_1]x[a_2,b,2]x[a_3,b_3][/mm] für den [mm]R^3.[/mm] Diese
> Intervalle kann ich doch nun beliebig klein wählen, ich
> muss nur gewähleisten, dass immer der Definitionsbereich
> in jedem Teilintervall meines Quaders liegt. Wäre der
> Durchschnitt dann nicht immer gleich dem
> Definitionsbereich?  

Wieso? Was ist wenn D eine Kugel ist?

SEcki


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]