www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Ist diese Funktion stetig?
Ist diese Funktion stetig? < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ist diese Funktion stetig?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:16 Fr 03.08.2012
Autor: physicus

Hallo zusammen

Wenn ich eine Funktion $f$ auf den reellen Zahlen habe, die rechseitigstetig ist und linke Limites besitzt, i.e. [mm] $\lim_{x\downarrow x_0}f(x)=f(x_0)$ [/mm] und [mm] $\lim_{x\uparrow x_0}f(x)$ [/mm] existiert und ich nun die linksseitig stetige version betrachte, i.e. [mm] $f(x_{-})$, [/mm] d.h. ich definiere [mm] $f(x_{-}):=\lim_{x_n\uparrow x}f(x_n)$, [/mm] ist diese Funktion dann stetig?

Danke und Gruss

physicus

        
Bezug
Ist diese Funktion stetig?: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Fr 03.08.2012
Autor: angela.h.b.


> Hallo zusammen
>  
> Wenn ich eine Funktion [mm]f[/mm] auf den reellen Zahlen habe, die
> rechseitigstetig ist und linke Limites besitzt, i.e.
> [mm]\lim_{x\downarrow x_0}f(x)=f(x_0)[/mm] und [mm]\lim_{x\uparrow x_0}f(x)[/mm]


Hallo,

also z.B. betrachten wir für

[mm]f(x):=\begin{cases} 2, & \mbox{fuer } x\ge 5 \mbox{ } \\ 1, & \mbox{fuer } x<5 \mbox{ } \end{cases}[/mm]

die Stelle [mm] x_0:=5. [/mm]

Es ist [mm] \lim_{x\downarrow 5}f(x)=2=f(5), [/mm]
[mm] \lim_{x\uparrow 5}f(x)=1. [/mm]


> existiert und ich nun die linksseitig stetige version
> betrachte, i.e. [mm]f(x_{-})[/mm], d.h. ich definiere
> [mm]f(x_{-}):=\lim_{x_n\uparrow x}f(x_n)[/mm], ist diese Funktion
> dann stetig?

Du willst nun , wenn ich es recht verstehe, die Funktion g mit

[mm] g(x):=\begin{cases} f(x), & \mbox{fuer } x\not= 5 \mbox{ } \\ 1, & \mbox{fuer } x=5 \mbox{ } \end{cases} [/mm]

betrachten.
Die ist nicht stetig.

LG Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]