Investitionsrechnung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:14 Sa 04.02.2012 | Autor: | SuperTTT |
Hallo,
ich habe diese Aufgabe hier zu bearbeiten und habe diese wie u. a. gelöst. Es wäre schön, wenn jemand meine Berechnung der Aufgaben a) und b) auf Richtigkeit / Vollständigkeit / Form überprüfen könnte. Sind die Antworten für die Fragen c) und d) korrekt und ausreichend?
Besten Dank im Voraus.
Gruß, SuperTTT
Aufgabe | Gegeben sind die zwei sich gegenseitig ausschließenden und jeweils über zwei Jahre hinweg laufenden Investitionsprojekte a und b, deren Zahlungskonsequenzen in der nachfolgenden Tabelle dargestellt sind.
Zeitpunkt t 0 1 2
Investition a -30 -20 290
Investition b -40 230 20
Die Zinssätze für Geldanlagen (5%) und Kredite (15%) sind unterschiedlich!
Welche Investition ist vorzuziehen, wenn der Investor an einer Maximierung seiner Vermögenssituation
a) zum Zeitpunkt t=0 (Anfangszeitpunkt der Investition)
b) zum Zeitpunkt t=2 (Endzeitpunkt der Investition)
interessiert ist?
c) Wie können die unterschiedlichen Ergebnisse der Aufgabenteile a) und b) erklärt werden? (Falls Sie keine unterschiedlichen Ergebnisse ermittelt haben, gehen Sie bitte dennoch davon aus!)
d) Mit Hilfe welcher Ergänzungsprojekte kann man eine zukünftige Einzahlung und eine zukünftige Auszahlung auf einen früheren Zeitpunkt transformieren?
(Lösungshinweis zu Aufgabenteil a): Die „standardmäßige“ Anwendung der Kapitalwertformel führt vermutlich zu keinem korrekten Ergebnis. Denken Sie an die alternative Berechnungsmöglichkeit über einen vollständigen Finanzplan. Dies gilt auch für Aufgabenteil d).) |
Meine Lösung:
1a) Investition a: 290 : [mm] 1,05^{2} [/mm] – 20 : [mm] 1,15^{1} [/mm] – 30 : [mm] 1,15^{0} [/mm] = 215,65
Investition b: 20 : [mm] 1,05^{2} [/mm] + 230 : [mm] 1,05^{1} [/mm] – 40 : [mm] 1,15^{0} [/mm] = 197,19
1b) Investition a: -30 * [mm] 1,15^{2} [/mm] – 20 * [mm] 1,15^{1} [/mm] + 290 * [mm] 1,05^{0} [/mm] = 227,33
Investition b: -40 * [mm] 1,15^{2} [/mm] + 230 * [mm] 1,05^{1} [/mm] + 20 * [mm] 1,05^{0} [/mm] = 208,60
1c) Die unterschiedlichen Ergebnisse erklären sich dadurch, dass Aufgabe a) den Kapitalwert berechnet, die Aufgabe b) hingegen den Endwert.
1d) Mit Hilfe des Rentenbarwertfaktors sowie des Rückwärtsverteilungsfaktors.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:55 So 05.02.2012 | Autor: | Josef |
Hallo SuperTTT,
>
> Gegeben sind die zwei sich gegenseitig ausschließenden und
> jeweils über zwei Jahre hinweg laufenden
> Investitionsprojekte a und b, deren Zahlungskonsequenzen in
> der nachfolgenden Tabelle dargestellt sind.
>
> Zeitpunkt t 0 1 2
> Investition a -30 -20 290
> Investition b -40 230 20
>
> Die Zinssätze für Geldanlagen (5%) und Kredite (15%) sind
> unterschiedlich!
> Welche Investition ist vorzuziehen, wenn der Investor an
> einer Maximierung seiner Vermögenssituation
> a) zum Zeitpunkt t=0 (Anfangszeitpunkt der Investition)
> b) zum Zeitpunkt t=2 (Endzeitpunkt der Investition)
> interessiert ist?
Jeweils Investition a.
> c) Wie können die unterschiedlichen Ergebnisse der
> Aufgabenteile a) und b) erklärt werden? (Falls Sie keine
> unterschiedlichen Ergebnisse ermittelt haben, gehen Sie
> bitte dennoch davon aus!)
> d) Mit Hilfe welcher Ergänzungsprojekte kann man eine
> zukünftige Einzahlung und eine zukünftige Auszahlung auf
> einen früheren Zeitpunkt transformieren?
> (Lösungshinweis zu Aufgabenteil a): Die
> „standardmäßige“ Anwendung der Kapitalwertformel
> führt vermutlich zu keinem korrekten Ergebnis. Denken Sie
> an die alternative Berechnungsmöglichkeit über einen
> vollständigen Finanzplan. Dies gilt auch für Aufgabenteil
> d).)
>
>
> Meine Lösung:
> 1a) Investition a: 290 : [mm]1,05^{2}[/mm] – 20 : [mm]1,15^{1}[/mm] – 30
> : [mm]1,15^{0}[/mm] = 215,65
> Investition b: 20 : [mm]1,05^{2}[/mm] + 230 : [mm]1,05^{1}[/mm] – 40 :
> [mm]1,15^{0}[/mm] = 197,19
>
> 1b) Investition a: -30 * [mm]1,15^{2}[/mm] – 20 * [mm]1,15^{1}[/mm] + 290 *
> [mm]1,05^{0}[/mm] = 227,33
> Investition b: -40 * [mm]1,15^{2}[/mm] + 230 * [mm]1,05^{1}[/mm] + 20 *
> [mm]1,05^{0}[/mm] = 208,60
>
> 1c) Die unterschiedlichen Ergebnisse erklären sich
> dadurch, dass Aufgabe a) den Kapitalwert (Barwert) berechnet, die
> Aufgabe b) hingegen den Endwert.
>
> 1d) Mit Hilfe des Rentenbarwertfaktors sowie des
> Rückwärtsverteilungsfaktors.
Durch den Aufzins- bzw. den Abzinsfaktor.
Viele Grüße
Josef
|
|
|
|