www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Invertierbarkeit, affiner Abb
Invertierbarkeit, affiner Abb < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invertierbarkeit, affiner Abb: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:45 So 18.11.2012
Autor: sissile

Aufgabe
Sei f eine affine ABbildung f: V->W
f(v) = g(v)  + [mm] w_0 [/mm]
[mm] \forall [/mm] v [mm] \in [/mm] V für lineare abbildungg: V->W, [mm] w_0 \in [/mm] W
Wenn g invertierbar ist -> f invertierbar.

Hallo,
die andere Richtung habe ich mittels dem Forum schonmal gelöst.

Zuzeigen: f ist injektiv und bijektiv

-)Injektiv
ZZ.: ker(f)=0
Sei v [mm] \in [/mm] V mit f(v)=0
ZZ.: v =0
f(v)= 0= g(v) + [mm] w_0 [/mm]
Ich komme da nicht weiter..
LG

        
Bezug
Invertierbarkeit, affiner Abb: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 So 18.11.2012
Autor: fred97


> Sei f eine affine ABbildung f: V->W
>  f(v) = g(v)  + [mm]w_0[/mm]
>  [mm]\forall[/mm] v [mm]\in[/mm] V für lineare abbildungg: V->W, [mm]w_0 \in[/mm] W
>  Wenn g invertierbar ist -> f invertierbar.

>  Hallo,
>  die andere Richtung habe ich mittels dem Forum schonmal
> gelöst.
>  
> Zuzeigen: f ist injektiv und bijektiv

Du meinst sicher: f ist injektiv und surjektiv.


>  
> -)Injektiv
>  ZZ.: ker(f)=0


nein. f ist doch nicht linear !

Zeige: aus [mm] f(v_1)=f(v_2) [/mm] folgt [mm] v_1=v_2 [/mm]

FRED

>  Sei v [mm]\in[/mm] V mit f(v)=0
>  ZZ.: v =0
>  f(v)= 0= g(v) + [mm]w_0[/mm]
> Ich komme da nicht weiter..
>  LG


Bezug
                
Bezug
Invertierbarkeit, affiner Abb: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:11 So 18.11.2012
Autor: sissile

Achso, das  darf man also nur so machen bei lin. Abb. okay ;)

-) f injektiv
[mm] f(v_1) [/mm] = [mm] f(v_2) [/mm]
[mm] g(v_1 [/mm] ) + [mm] w_0 [/mm] = [mm] g(v_2) [/mm] + [mm] w_0 [/mm]
[mm] g(v_1 [/mm] ) = g( [mm] v_2) [/mm]
[mm] v_1 [/mm] = [mm] v_2 [/mm]

-) f surjektiv
Sei w [mm] \in [/mm] W , ZZ: [mm] \exists [/mm] v [mm] \in [/mm] V mit f(v)=w
Das habe ich leider nicht geschafft.

LG

Bezug
                        
Bezug
Invertierbarkeit, affiner Abb: Antwort
Status: (Antwort) fertig Status 
Datum: 16:17 So 18.11.2012
Autor: fred97


> Achso, das  darf man also nur so machen bei lin. Abb. okay
> ;)
>  
> -) f injektiv
>  [mm]f(v_1)[/mm] = [mm]f(v_2)[/mm]
>  [mm]g(v_1[/mm] ) + [mm]w_0[/mm] = [mm]g(v_2)[/mm] + [mm]w_0[/mm]
>  [mm]g(v_1[/mm] ) = g( [mm]v_2)[/mm]
>  [mm]v_1[/mm] = [mm]v_2[/mm]

Ja, da g inv. ist.

>  
> -) f surjektiv


>  Sei w [mm]\in[/mm] W , ZZ: [mm]\exists[/mm] v [mm]\in[/mm] V mit f(v)=w
>  Das habe ich leider nicht geschafft.

f(v)=w  [mm] \gdw g(v)+w_0=w \gdw g(v)=w-w_0 [/mm]

Schaffst Du es nun ?

FRED

>  
> LG


Bezug
                                
Bezug
Invertierbarkeit, affiner Abb: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:31 So 18.11.2012
Autor: sissile


> f(v)=w  $ [mm] \gdw g(v)+w_0=w \gdw g(v)=w-w_0 [/mm] $

Die letzte Gleichung gilt ja da g surjektiv ist und jedes Bild ein Urbild hat.
Da das Äquivalenzpfeile sind muss die erste Aussage auch übereinstimmen.
Meintest du das so?

LG

Bezug
                                        
Bezug
Invertierbarkeit, affiner Abb: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 So 18.11.2012
Autor: fred97


> > f(v)=w  [mm]\gdw g(v)+w_0=w \gdw g(v)=w-w_0[/mm]
>  Die letzte
> Gleichung gilt ja da g surjektiv ist und jedes Bild ein
> Urbild hat.
>  Da das Äquivalenzpfeile sind muss die erste Aussage auch
> übereinstimmen.
>  Meintest du das so?

Da g surjetiv ist, gibt es ein v [mm] \in [/mm] V mit: [mm] g(v)=w-w_0 [/mm]

Damit gibt es ein v [mm] \in [/mm] V mit: f(v)=w

FRED

>  
> LG


Bezug
                                                
Bezug
Invertierbarkeit, affiner Abb: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:56 So 18.11.2012
Autor: sissile

Ja genau das meinte ich ;)
Vielen lieben dank. Jetzt muss ich nur noch das mit dem affinen Graph irgendwie verstehen^^

Liebe Grüße,
schönen Sonntag.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]