www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Integrationsgebiete
Integrationsgebiete < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrationsgebiete: Frage
Status: (Frage) beantwortet Status 
Datum: 16:10 Mo 11.07.2005
Autor: steelscout

Hi,
ich habe gerade Problem bei der Umstellung einer Integrationsreihenfolge, also besser gesagt, bei der veränderten Darstellung des entsprechenden Gebietes.
ich soll von [mm] \integral_{1}^{3} {(\integral_{\bruch{x}{3}}^{2x} {f(x,y) dy)} dx} [/mm] den Integrationsbereich angeben und die Reihenfolge ändern.
Der Bereich wäre ja M =  [mm] \{(x,y) | 1\le x\le 3,\bruch{x}{3}\le y\le 2x \} [/mm]
Jetzte habe ich versucht aus dieser Form [mm] a\le x\le [/mm] b , [mm] \alpha(x)\le y\le \beta(x) [/mm] die Form [mm] c\le y\le [/mm] d , [mm] \gamma(x)\le x\le \delta(x) [/mm] zu machen.
So erhielt ich nach Umstellen der Ungleichung
[mm] \bruch{1}{3}\le y\le [/mm] 6 und [mm] \bruch{y}{2}\le [/mm] x [mm] \le [/mm] 3y.
Wenn ich mit diesen Grenzen und veränderter Reihenfolge integriere, dann müsste ja dasselbe herauskommen, wie beim Anfangsintegral. (für f(x,y)=1 z.b)
Leider geschieht das nicht und ich hab das Gefühl irgendwas total falsch zu machen. Kann mir jemand helfen?

        
Bezug
Integrationsgebiete: Antwort
Status: (Antwort) fertig Status 
Datum: 20:03 Mo 11.07.2005
Autor: Fire21

Hi,

man muß hier ein wenig aufpassen. [mm] \frac{1}{3}\leq y\leq [/mm] 6 ist schon mal richtig, aber [mm] \frac{y}{2}\leq x\leq [/mm] 3y stimmt nicht. Und zwar kommt es darauf an, in welchem Bereich sich y gerade bewegt und dann ist darauf zu achten, dass die Bedingung [mm] 1\leq x\leq [/mm] 3 nicht verletzt wird. Für [mm] \frac{1}{3}\leq y\leq [/mm] 1 beispielsweise gilt [mm] 1\leq x\leq [/mm] 3y, wäre hier die untere Grenze [mm] \frac{y}{2} [/mm] wäre die ursprüngliche Bedingung für x nämlich gerade verletzt. So fährt man dann fort und erhält für drei Bereiche von y drei verschiedene Grenzen für x, d.h. man muß das Integral über y zunächst aufspalten.

Vielleicht hilft es dir, die Menge [mm] \subset\IR^{2}, [/mm] über die integriert werden soll, kurz zu skizzieren.

Gruß

Bezug
                
Bezug
Integrationsgebiete: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:38 Mo 11.07.2005
Autor: steelscout

Alles klar, ich darf ja die ersten Bedingungen nicht außer Augen lassen.
Hmpf, da wird so eine Umkehrung ja wirklich aufwendig. ;)

Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]