www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integration
Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:28 Do 03.08.2017
Autor: Rocky1994

Hallo die Funktion das Integral der Funktion   [mm] f(x)=\bruch{x}{\wurzel{x+1}} [/mm] soll   im Intervall [3;8] soll berechnet werden.

Nun mein Problem. Ich habe keine Ahnung wie man die Stammfuntion bildet. Hab auch schon http://www.integralrechner.de geschaut, verstehe es aber nicht. Kann mir einer von euch das erklären?

LG Rocky1994

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Do 03.08.2017
Autor: Diophant

Hallo,

> Hallo die Funktion das Integral der Funktion
> [mm]f(x)=\bruch{x}{\wurzel{x+1}}[/mm] soll im Intervall [3;8] soll
> berechnet werden.

>

> Nun mein Problem. Ich habe keine Ahnung wie man die
> Stammfuntion bildet. Hab auch schon
> http://www.integralrechner.de geschaut, verstehe es aber
> nicht. Kann mir einer von euch das erklären?

so einfach erklären möchte ich das nicht. Man bekommt ja solche Aufgaben auch nicht nachts in einer dunklen Gasse übergebraten, sondern man hat sich in irgendeinem Rahmen mit der Materie vorher beschäftigt.

Substituiere [mm]z=\sqrt{x+1}[/mm], das geht sehr einfach.


Gruß, Diophant
 

Bezug
                
Bezug
Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:06 Do 03.08.2017
Autor: Rocky1994

Hallo,

diese Idee hatte ich auch schon:

[mm] \integral_{3}^{8} \bruch{x}{\wurzel{x+1}}{dx} [/mm]

[mm] z=\wurzel{x+1} [/mm]
z´= [mm] \bruch{1}{2*\wurzel{x+1}}=\bruch{1}{2*z} [/mm]

[mm] \bruch{1}{2*z} [/mm] = [mm] \bruch{dz}{dx} [/mm] <=> [mm] \bruch{dx}{2*z}=dz [/mm] <=> 2*z*dz

Setze ich das jetzt ein:

[mm] \integral_{z(3)}^{z(8)} \bruch{x}{z}{2z*dz} [/mm] = [mm] \integral_{z(3)}^{z(8)} [/mm] 2x dz

was mache ich falsch?

LG Rocky1994

Bezug
                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Do 03.08.2017
Autor: Diophant

Hallo,

> Hallo,

>

> diese Idee hatte ich auch schon:

>

> [mm]\integral_{3}^{8} \bruch{x}{\wurzel{x+1}}{dx}[/mm]

>

> [mm]z=\wurzel{x+1}[/mm]
> z´= [mm]\bruch{1}{2*\wurzel{x+1}}=\bruch{1}{2*z}[/mm]

>

> [mm]\bruch{1}{2*z}[/mm] = [mm]\bruch{dz}{dx}[/mm] <=> [mm]\bruch{dx}{2*z}=dz[/mm] <=>
> 2*z*dz

>

> Setze ich das jetzt ein:

>

> [mm]\integral_{z(3)}^{z(8)} \bruch{x}{z}{2z*dz}[/mm] =
> [mm]\integral_{z(3)}^{z(8)}[/mm] 2x dz

>

> was mache ich falsch?

Nichts, nur denkst du das ganze nicht zu Ende. Aus der Substitution

[mm] z=\sqrt{x+1} [/mm]

folgt ja sofort

[mm] x=z^2-1 [/mm]

und damit bekommt man die Substitution

[mm] \int{ \frac{x}{ \sqrt{x+1}} dx}= 2*\int{\left(z^2-1\right) dz}[/mm]



Gruß, Diophant

Bezug
                                
Bezug
Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:38 Do 03.08.2017
Autor: Rocky1994

Vielen Dank. Wusste nicht das man das machen darf.

LG Rocky1994

Bezug
                                        
Bezug
Integration: Randbemerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:50 Do 03.08.2017
Autor: Diophant

Hallo,

nun ja: das ist vielleicht auch noch erklärungsbedürftig.

Ich habe ja die eigentliche Substitutionsgleichung quadriert:

[mm] z=\sqrt{x+1} [/mm]

[mm] z^2=x+1 [/mm]

[mm] x=z^2-1 [/mm]

Während die letzte Umformung eine Äquivalenzumformung ist, ist es das Quadrieren i.a. nicht. Überlege dir selbst, weshalb das hier doch der Fall ist. Es hat etwas mit dem maximal möglichen Definitionsbereich des Integranden zu tun.


Gruß, Diophant



Bezug
        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 08:28 Fr 04.08.2017
Autor: fred97

Neben der von Diophant vorgeschlagenen Substitution kommt man auch mit partieller Integration zum Ziel. Dazu schreibe



$ [mm] \integral_{}^{} \bruch{x}{\wurzel{x+1}}{dx}= \integral_{}^{} [/mm] x [mm] \bruch{1}{\wurzel{x+1}}{dx}= \integral_{}^{}v(x)u'(x) [/mm] dx$

mit v(x)=x und [mm] u'(x)=\bruch{1}{\wurzel{x+1}}. [/mm]

Probiers mal !

Bezug
        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 08:35 Fr 04.08.2017
Autor: donquijote


> Hallo die Funktion das Integral der Funktion  
> [mm]f(x)=\bruch{x}{\wurzel{x+1}}[/mm] soll im Intervall [3;8] soll
> berechnet werden.

Hallo,
wenn wir schon bei verschiedenen Lösungswegen sind, dann würde ich y=x+1 substituieren und komme auf
[mm]\int_4^9y^{1/2}-y^{-1/2}\,dy[/mm].

>
> Nun mein Problem. Ich habe keine Ahnung wie man die
> Stammfuntion bildet. Hab auch schon
> http://www.integralrechner.de geschaut, verstehe es aber
> nicht. Kann mir einer von euch das erklären?
>  
> LG Rocky1994
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]