www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integration
Integration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: Substitution
Status: (Frage) beantwortet Status 
Datum: 01:14 Do 20.02.2014
Autor: sonic5000

Hallo,
folgendes bestimmtes Integral soll durch Substitution gelöst werden:

[mm] \integral_{0}^{r}{\br{dx}{\wurzel{r^2-x^2}}} [/mm]

Im Buch steht nun folgende Substitution:

x=r*sin(u), dx=r*cos(u)*du, [mm] \wurzel{r^2-x^2}=r*cos(u), u=arcsin(\br{x}{r}) [/mm]

Sollen das jetzt 2 Substitutionen sein? Die ersten beiden Gleichungen ist wohl die erste Substitution... Die vierte Gleichung steht wohl für die Substitution der Integrationsgrenzen... Aber was bedeutet die dritte Gleichung?

Wurden da jetzt 2 Substitutionen aufeinmal angewendet?

Ich hätte jetzt erstmal für dx den Term r*cos(u) und für x den Term r*sin(u) eingesetzt...

In der Lösung steht aber dann ganz einfach:

[mm] \integral_{0}^{r}{\br{dx}{\wurzel{r^2-x^2}}=\integral_{0}^{\br{\pi}{2}}{\br{r*cos(u)}{r*cos(u)}}du} [/mm]

Kann mir jemand helfen?

LG und besten Dank im Voraus...







        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 01:32 Do 20.02.2014
Autor: Sax

Hi,

> Hallo,
>  folgendes bestimmtes Integral soll durch Substitution
> gelöst werden:
>  
> [mm]\integral_{0}^{r}{\br{dx}{\wurzel{r^2-x^2}}}[/mm]
>  
> Im Buch steht nun folgende Substitution:
>  
> x=r*sin(u), dx=r*cos(u)*du, [mm]\wurzel{r^2-x^2}=r*cos(u), u=arcsin(\br{x}{r})[/mm]
>  
> Sollen das jetzt 2 Substitutionen sein?

Nein, es ist nur eine.

> Die ersten beiden Gleichungen ist wohl die erste Substitution...

> Die vierte Gleichung steht wohl für die Substitution der
> Integrationsgrenzen...

Genauer: mit Hilfe der vierten Gleichung können die substituierten Integrationsgrenzen berechnet werden.

> Aber was bedeutet die dritte Gleichung?

Das wirst du gleich sehen.

>  
> Wurden da jetzt 2 Substitutionen aufeinmal angewendet?
>
> Ich hätte jetzt erstmal für dx den Term r*cos(u) und für
> x den Term r*sin(u) eingesetzt...

Dann mach' das doch mal. Setze aber korrekterweise für dx den Term dx=r*cos(u)*du ein.
Wenn du dann weiterrechnest und [mm] sin^2+cos^2=1 [/mm] beachtest, siehst du, dass du automatisch auf die dritte Gleichung kommst.

>  
> In der Lösung steht aber dann ganz einfach:
>  
> [mm]\integral_{0}^{r}{\br{dx}{\wurzel{r^2-x^2}}=\integral_{0}^{\br{\pi}{2}}{\br{r*cos(u)}{r*cos(u)}}du}[/mm]
>  
> Kann mir jemand helfen?
>
> LG und besten Dank im Voraus...

Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]