www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Integralrechnung (Stammfunktionen)
Integralrechnung (Stammfunktionen) < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung (Stammfunktionen): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:20 Mo 05.07.2004
Autor: andreas99

Hi,

ich habe folgendes Integral:

[mm] \integral_{}^{}{(2x-3)^2}dx [/mm]

Ergibt mit Hilfe von Integralsubstitution:

[mm] \bruch{4}{3}x^3-6x^2-9x-\bruch{27}{6} [/mm]

In dem Lösungsverzeichnis steht aber:

[mm] \bruch{4}{3}x^3-6x^2-9x+C [/mm]

Die genaue Aufgabenstellung heißt: "Bestimmen Sie sämtliche Stammfunktionen zu". Heißt das also ich muss für diesen Fall [mm] -\bruch{27}{6} [/mm] durch +C ersetzen, weil ich sämtliche haben will?

Und wäre die Fragestellung nicht auf sämtliche definert hätte die erste Lösung gereicht?

        
Bezug
Integralrechnung (Stammfunktionen): Antwort
Status: (Antwort) fertig Status 
Datum: 14:29 Mo 05.07.2004
Autor: Julius

Lieber Andreas!

> ich habe folgendes Integral:
>  
> [mm]\integral_{}^{}{(2x-3)^2}dx [/mm]
>  
> Ergibt mit Hilfe von Integralsubstitution:
>  
> [mm]\bruch{4}{3}x^3-6x^2-9x-\bruch{27}{6} [/mm]
>  
> In dem Lösungsverzeichnis steht aber:
>  
> [mm]\bruch{4}{3}x^3-6x^2-9x+C [/mm]
>  
> Die genaue Aufgabenstellung heißt: "Bestimmen Sie sämtliche
> Stammfunktionen zu". Heißt das also ich muss für diesen
> Fall [mm]-\bruch{27}{6}[/mm] durch +C ersetzen, weil ich sämtliche
> haben will?

[ok]

> Und wäre die Fragestellung nicht auf sämtliche definert
> hätte die erste Lösung gereicht?

Dann hättest du eine ganz spezielle Stammfunktion berechnet. Das hätte aber keinen Sinn gemacht, denn man gibt immer alle möglichen Stammfunktionen an, solange keine weiteren Bedingungen (etwa Anfangsbedingungen an eine Stammfunktion wie [mm] $F(0)=c_0$) [/mm] angegeben sind. Du könntest höchstens schreiben: Eine mögliche Stammfunktion lautet:

[mm]\bruch{4}{3}x^3-6x^2-9x-\bruch{27}{6}[/mm],

aber das wäre wirklich unschön. Warum solltest du gerade diese wählen? Nur weil du irgendwie darauf gekommen bist? Naja, dann rechnet jemand anderes auf einem anderen Weg und kommt auf einen anderen konstanten Term. Und dann streitet ihr euch [fechtduell]: Was von beiden ist die Stammfunktion? Und keiner hat Recht. Das ist doch nicht schön. [grummel] Dann geben wir doch lieber gleich die Klasse aller Stammfunktionen von [mm](2x-3)^2[/mm] in Form von

[mm]\bruch{4}{3}x^3-6x^2-9x+C[/mm] mit $C [mm] \in \IR$ [/mm]

an, und alle sind glücklich. [banane]

Liebe Grüße
Julius





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]