Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:40 So 27.09.2009 | Autor: | coucou |
Aufgabe | Wie groß ist die Fläche zwischen dem Graphen von f, der Tangente in P und der x-Achse? [mm] f(x)=1/2x^2; [/mm] P (3/4,5) |
Also, ich hab ausgerechnet, dass die Tangente die Gleichung f(x)= 3x-4,5 hat. Das ist ja denk ich auch richtig. Allerdings scheiter ich jetzt daran die Schnittpunkte der drei Graphen auszurechnen. Nehm ich für das mit der x-Achse einfach f(x)=0? Oder wie bau ich das da mit ein? Sonst hätte man ja [mm] 1/2x^2-3x-4,5-0 [/mm] ??!?!?! Dann kann man die Null ja auch gleich weglassen. Oder rechne ich den Schnittpunkt zw. f(x) und der Tangente sowie f(x) und der x-Achse? Und wenn ja wie? Kann mir bitte jemand die Rechnung aufschreiben, ich hab es jetzt schon auf tausend verschiedene Weisen versucht und es kommt immer nur Scheiß raus!
|
|
|
|
> Wie groß ist die Fläche zwischen dem Graphen von f, der
> Tangente in P und der x-Achse? [mm]f(x)=1/2x^2;[/mm] P (3/4,5)
> Also, ich hab ausgerechnet, dass die Tangente die
> Gleichung f(x)= 3x-4,5 hat. Das ist ja denk ich auch
> richtig.
> Allerdings scheiter ich jetzt daran die
> Schnittpunkte der drei Graphen auszurechnen. Nehm ich für
> das mit der x-Achse einfach f(x)=0? Oder wie bau ich das da
> mit ein? Sonst hätte man ja [mm]1/2x^2-3x-4,5-0[/mm] ??!?!?! Dann
> kann man die Null ja auch gleich weglassen. Oder rechne ich
> den Schnittpunkt zw. f(x) und der Tangente sowie f(x) und
> der x-Achse? Und wenn ja wie? Kann mir bitte jemand die
> Rechnung aufschreiben, ich hab es jetzt schon auf tausend
> verschiedene Weisen versucht und es kommt immer nur Scheiß
> raus!
>
am besten machst du dir mal eine skizze dazu oder lässt dir die funktionen mal plotten. dann fällt auf, dass du die erste teilfläche (also 0 bis 1.5 (schnittpunkt der tangente mit der x-achse)) "normal" mit dem integral von
[mm] \integral_{0}^{1.5}{f(x) dx} [/mm] berechenbar ist.
die zweite teilfläche hingegen kannst du berechnen durch die differenzfunktion: a(x)=f(x)-t(x)
t(x) soll hier die tangente darstellen:
[mm] \integral_{1.5}^{3}{a(x) dx}
[/mm]
beides addiert ergibt dann die gesamtfläche...
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:13 So 27.09.2009 | Autor: | coucou |
Danke:)
Ist ja eigentlich voll logisch. Hättes mir irgendwie nur mal besser zeichnen müssen:)
Also das "normale" hab ich jetzt auch raus, allerdings muss ich ja beim zweiten mit der Differenzfunktion erst noch den Schnittpunkt rausfinden, weil ich ja das Intervall 1,5 ; SP hab. Nur irgendwie kommt da dauernd scheiß raus! Was ist falsch?!
1/2 [mm] x^2 [/mm] - 3x-4,5 = 0
[mm] x^2-6x-9 [/mm] = 0
[mm] (x^2-6x [/mm] +9 ) - 9= 9
[mm] (x-3)^2 [/mm] = 18
=(
|
|
|
|
|
> Danke:)
> Ist ja eigentlich voll logisch. Hättes mir irgendwie nur
> mal besser zeichnen müssen:)
> Also das "normale" hab ich jetzt auch raus, allerdings
> muss ich ja beim zweiten mit der Differenzfunktion erst
> noch den Schnittpunkt rausfinden, weil ich ja das Intervall
> 1,5 ; SP hab. Nur irgendwie kommt da dauernd scheiß raus!
> Was ist falsch?!
>
> 1/2 [mm]x^2[/mm] - 3x-4,5 = 0
> [mm]x^2-6x-9[/mm] = 0
> [mm](x^2-6x[/mm] +9 ) - 9= 9
> [mm](x-3)^2[/mm] = 18
> =(
der schnittpunkt ist doch gegeben mit P(3/4.5)?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:18 So 27.09.2009 | Autor: | coucou |
Boah bin ich blöd :D
Danke!
|
|
|
|