www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integrale
Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale: Limes
Status: (Frage) beantwortet Status 
Datum: 20:37 Di 14.02.2006
Autor: kuminitu

Aufgabe
Sei f : [1,1)  [mm] \to \IR [/mm] eine stetige, positive Funktion, für die das Integral
[mm] \integral_{1}^{ \infty}{f(x) dx} [/mm]
existiert. Folgt daraus zwangsläufig  [mm] \limes_{n\rightarrow\infty} [/mm] f(x) = 0 ?
Antwort: Nein!
Beweisen Sie dies, indem Sie z.B. in folgenden Schritten vorgehen:
1. Definieren Sie eine stetige(!) Funktion g : [1,1) [mm] \to \IR [/mm] mit folgenden Eigenschaften
• g(n) = 1 für alle n  [mm] \in \IN, \ge [/mm]  2,
• g(x) = 0 falls x  [mm] \not\in \bigcup_{i=2}^{ \infty} [/mm] [n- [mm] \bruch{1}{n^{2}},n+ \bruch{1}{n^{2}}], [/mm]

[mm] \integral_{1}^{ \infty}{g(x) dx} [/mm] existiert.
(Als Definition genügt eine deutliche Skizze.)
2. Definieren Sie eine stetige, positive Funktion f, indem Sie zu g eine geeignete Funktion addieren,
und zeigen Sie, dass
[mm] \integral_{1}^{ \infty}{f(x) dx} [/mm] existiert
und
[mm] \limes_{n\rightarrow\infty} [/mm] f(x)  [mm] \not= [/mm] 0

Hallo,

habe die Skizze aus Aufgabe 1) meiner Meinung nach auch richtig gezeichnet,
bin jetzt aber leider mit Aufgabe 2 überfordert!
Weiss leider nicht wie die geeignete Funktion aussehen soll!
Kann mir jemand helfen.

gruß
kuminitu

        
Bezug
Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 23:46 Di 14.02.2006
Autor: Leopold_Gast

Es muß wohl des öfteren [mm][1,\infty)[/mm] statt [mm][1,1)[/mm] heißen.
Man könnte doch [mm]f(x) = \frac{1}{x^2} + g(x)[/mm] wählen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]