www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralberechnung..
Integralberechnung.. < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralberechnung..: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:06 Mi 27.09.2006
Autor: Hello-Kitty

Aufgabe
Berechne den Onhalt der Fläche, welche der Graph von f mit der x-Achse umschließt...

[mm] 1.)f(x)=1/5x^3-2x^2+5x [/mm]

Hallo...
Komme leider nicht weiter...

Meine ersten Gedanken:
[mm] 1/5x^3- 2x^2 [/mm] + 5x = 0
[mm] 0=x^3-10x+25x [/mm]

0= [mm] x(x^2-10x+25) [/mm]

x1/2= 10/2 +/- [mm] \wurzel{((10/2)^2-25)} [/mm]

x1= -25
x2= 20

....is hier schon ein fehler? und wie gehts weiter?...Fragen über Fragenn achje..

LG

        
Bezug
Integralberechnung..: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Mi 27.09.2006
Autor: smarty

Hallo,

> Berechne den Onhalt der Fläche, welche der Graph von f mit
> der x-Achse umschließt...
>  
> [mm]1.)f(x)=1/5x^3-2x^2+5x[/mm]
>  Hallo...
>  Komme leider nicht weiter...
>  
> Meine ersten Gedanken:
>  [mm]1/5x^3- 2x^2[/mm] + 5x = 0
>  [mm]0=x^3-10x+25x[/mm]
>  
> 0= [mm]x(x^2-10x+25)[/mm]
>  
> x1/2= 10/2 +/- [mm]\wurzel{((10/2)^2-25)}[/mm]
>  
> x1= -25
>  x2= 20
>  
> ....is hier schon ein fehler?

ist doch gut, wenn du das schon einmal bemerkt hast [ok]

[mm] (10/2)^2=5^2=25 [/mm]


naja und 25-25=0


dann bleibt für [mm] x_{1,2}=5 [/mm] übrig und [mm] x_3=0 [/mm]



deine Grenzen sind somit bei 0 und 5


> und wie gehts
> weiter?...Fragen über Fragenn achje..
>  
> LG


viel Spaß beim Integrieren  :-)



Gruß
Smarty

Bezug
                
Bezug
Integralberechnung..: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 Mi 27.09.2006
Autor: Hello-Kitty

danke für deine schnell antwort..aber ich versteh nicht ganz wie du auf 0 kommst?!...


also 10/2 = 5

dann is dass ja 5 +/- 0 (weil die klammer ja [mm] \wurzel{0} [/mm]  oder?

ich frag lieber noch mal nach, damit ich das verstehe..sorry..

Bezug
                        
Bezug
Integralberechnung..: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Mi 27.09.2006
Autor: smarty

gut, dass du fragst :-)

> danke für deine schnell antwort..aber ich versteh nicht
> ganz wie du auf 0 kommst?!...
>  
>
> also 10/2 = 5
>
> dann is dass ja 5 +/- 0 (weil die klammer ja [mm]\wurzel{0}[/mm]  
> oder?

genau, und bei x=5 liegt dementsprechend eine doppelte Nullstelle vor:

[mm] x_1=5+0 [/mm]

[mm] x_2=5-0 [/mm]

[mm] x_3=0 [/mm]  du hattest doch bereits ein x schon mal ausgeklammert


jetzt klarer?



> ich frag lieber noch mal nach, damit ich das
> verstehe..sorry..

kein sorry ;-)


Gruß
Smarty

gleich kommt noch ein Bild

Bezug
                        
Bezug
Integralberechnung..: Bildchen
Status: (Antwort) fertig Status 
Datum: 18:29 Mi 27.09.2006
Autor: smarty


[huhu]


da is es:


[Dateianhang nicht öffentlich]




Gruß
Smarty

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                                
Bezug
Integralberechnung..: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:38 Mi 27.09.2006
Autor: Hello-Kitty

Danke, dass ist wirklich lieb von dir und kann das jetzt auch gut nachvollziehen!!..

Hab angefangen weiterzurechnen...

F(x)= [mm] \integral_{0}^{5}{(-1/4*1/5x^5+1/4x^4) dx} [/mm]

...
[mm] =--1/20x^5+ x^4/4 [/mm]
---
hoffentlich richtig..oje

[mm] [-1/20x^5+1/4x^4]0-5 [/mm]

[mm] =(-1/20*5^5+1/4*5^4) [/mm] -(0)...=?

rechnerische Fehler bis jetzt?..oder darf ich mich trauen das einzugeben*lach*...Danke nochmal, dass du dir so viel Zeit nimmst

Bezug
                                        
Bezug
Integralberechnung..: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Mi 27.09.2006
Autor: smarty

uiuiuiuiuiuiuiuiuiuiuiuiuiuiuiuiuiu ..... Chaos


langsam....


das Integral von [mm] x^3 [/mm] ist [mm] \bruch{1}{4}x^4 [/mm]  dann ist natürlich das Integral von [mm] \bruch{1}{5}x^3 [/mm]  somit  [mm] \bruch{1}{5}*\bruch{1}{4}x^4 [/mm]


die anderen beiden gehen analog dazu

Integral von [mm] -2x^2=.... [/mm]

Integral von 5x=....


und für deine gesamte Funktion ist dann einfach [mm] I_1+I_2+I_3=I_{gesamt} [/mm]



Die Integration findet hier ja nach der MBPotenzregel statt.    <--- klick mal




Als Ergebnis erhalte ich [mm] I=\bruch{125}{12} [/mm]




Muss dann weg, aber bei weiteren Fragen sind ja auch andere noch da.



[winken]

Smarty

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]