www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Integral über Norm
Integral über Norm < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral über Norm: Frage
Status: (Frage) beantwortet Status 
Datum: 13:38 Mi 20.07.2005
Autor: espa

Guten Tag!

Ich hatte bereits einmal die Frage gestellt, wie man folgendes Integral löst:

[mm] \integral [/mm] {log  [mm] \parallel [/mm] x  [mm] \parallel [/mm] dx} löst. Nun habe ich mich kundig gemacht und weiß, dass damit einfach die euklidische Norm gemeint ist.

Löst man dieses Integral nun mit Substitution? Was muss man denn dort einsetzen? log von Wurzel aus  [mm] (x_{1})²+(x_{2})²+... [/mm] ) ?? Doch bis wohin geht das n von [mm] x_{n} [/mm] dann?

Für Ihre Hilfe bedanke ich mich im Vorhinein recht herzlich, Ihre espa
Wie mache ich dies ohne Grenzen?

        
Bezug
Integral über Norm: Existiert wohl nicht
Status: (Antwort) fertig Status 
Datum: 19:54 Mi 20.07.2005
Autor: MatthiasKr

Hallo espa,

wenn ich dich richtig verstehe, möchtest Du das Integral

[mm]\integral_{\IR^n} {\ln||x|| d^nx}[/mm]

berechnen.

Hm, ich sage es mal so, wenn man die entsprechende technik beherrscht bzw. in der vorlesung gelernt hat, ist es ganz leicht.... ;-)
Bei der Funktion [mm]\ln ||x||[/mm] handelt es sich um eine sogenannte rotationssymmetrische funktion, das heißt, der funktionswert hängt nur von [mm]||x||[/mm] ab. Anschaulich gesehen ist die funktion auf sphären also immer konstant.
integrieren kann man solche funktionen sehr leicht, wenn man sie auf polarkoordinaten transformiert (was man natürlich schon mal vorher gemacht haben sollte), dann erhält man nämlich


[mm]\integral_{\IR^n}{\ln ||x|| d^n x}=k_n*\integral_{0}^{\infty}{\ln r * r^{n-1} dr}[/mm]

[mm]k_n[/mm] ist dabei das volumen bzw. die oberfläche der (n-1)-dimensionalen Einheitssphäre.

Was du nach der transformation direkt erkennst ist, dass das integral für [mm]n=1,2,3,...[/mm] nicht endlich sein kann also 'nicht existiert', da für [mm] $r\to \infty$ [/mm] auch [mm] $\ln [/mm] r$ unendlich groß wird, wenn auch sehr langsam.

Interessant ist aber die Frage, für welche $n$ das Integral zB. auf der Einheitskugel existiert. Da der Logarithmus bei $0$ eine Polstelle hat, ist das ja keinesfalls selbstverständlich. Vielleicht ist deine aufgabe so gemeint.

Ich hoffe, ich konnte dir ein wenig helfen.

Viele Grüße
Matthias


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]