Integral soll 0 sein < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 17:41 Do 07.11.2019 | Autor: | Jellal |
Hallo Leute,
ich stehe vor folgender Aufgabe:
Gegeben ist die DGL: x' = [mm] x^{3} [/mm] - x [mm] +\mu [/mm] p(t)
Dabei ist x(t) eine skalare Funktion, [mm] \mu [/mm] ein Modellparameter und p(t) eine 1-periodische Funktion.
Gezeigt werden musste, dass für genügend kleine [mm] \mu [/mm] drei 1-periodische Lösungen [mm] x_{i}, [/mm] i=1,2,3, existieren, und auch ihre Stabilität musste gefunden werden.
Setzt man [mm] \mu [/mm] auf 0, so findet man die "trivialen" 1 periodischen Lösungen als Nullstellen von [mm] x^{3}-x [/mm] und die Stabilität ergibt sich aus der Ableitung des letzteren Terms.
Über die Poincare-Map und den Satz für implizite Funktionen kann man dann zeigen, dass es auch drei Lösungen für [mm] \mu [/mm] nahe 0 gibt.
Der letzte Part der Aufgabe lautet:
Zeigen Sie, dass gilt [mm] \integral_{0}^{1}{(x_{i}-x_{j})(x_{1}+x_{2}+x_{3}) dx} [/mm] = 0 mit [mm] x_{i} [/mm] (i=1,2,3) als den drei periodischen Lösungen.
In ähnlichen Fällen habe ich schon mal die Ableitungen addiert oder subtrahiert (mittels der ODE), dann auf beiden Seiten integriert, und da die x periodisch sind, ist das Integral 0. Aber ich finde keine Kombination der ODE für die einzelnen i, sodass sich der geforderte Integrand ergibt.
Jemand eine Idee?
vG.
Jellal
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:20 Sa 09.11.2019 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|