Integral: Gradient,Kugel < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:46 So 30.01.2011 | Autor: | qsxqsx |
Hallo,
In einem Buch über Elektrostatik steht folgende Beziehung:
[mm] -\bruch{1}{4*\pi}*Grad \integral_{K}^{}{\bruch{1}{|r-r'|} (d^{3}\tau)'} [/mm] = [mm] \bruch{1}{4*\pi} \integral_{K}^{}{\bruch{r-r'}{|r-r'|^{3}} (d^{3}\tau)'} [/mm] = [mm] \bruch{r - r_{0}}{3}
[/mm]
Erstes Gleichheitszeichen ist mir klar, zweites aber nicht!
Die Integration findet über eine Kugel staht mit Radius R. Ich nehme an, dass das Ergebnis unabhängig von R ist obwohl da nichts dazu steht. Die Kugel hat das Zentrum [mm] r_{0}. [/mm]
Für r' sollte also gelten |r' - [mm] r_{0}| \le [/mm] R
Ich habe folgendes - leider falsch - probiert:
Substiution von r - r' = r''
Somit wäre das Integral [mm] \bruch{1}{4*\pi} \integral_{|r - r_{0} - r''| \le R
}^{}{\bruch{r''}{|r''|^{3}} (d^{3}\tau)'} [/mm]
Weil aber [mm] \integral_{}^{}{\bruch{x}{(x^{2} + y^{2} + z^{2})^{3/2}} dx} [/mm] = [mm] -\bruch{1}{(x^{2} + y^{2} + z^{2})^{1/2}} [/mm] kommt da ja [mm] -\bruch{1}{r''} [/mm] raus?! Es muss ja aber r'' rauskommen?
Dank&Gruss
|
|
|
|
Hallo qsxqsx!
> Hallo,
>
> In einem Buch über Elektrostatik steht folgende
> Beziehung:
>
> [mm]-\bruch{1}{4*\pi}*Grad \integral_{K}^{}{\bruch{1}{|r-r'|} (d^{3}\tau)'}[/mm]
> = [mm]\bruch{1}{4*\pi} \integral_{K}^{}{\bruch{r-r'}{|r-r'|^{3}} (d^{3}\tau)'}[/mm]
> = [mm]\bruch{r - r_{0}}{3}[/mm]
>
[mm] ($r_0,r,r' \in \mathbb{R}^3$. [/mm] Was soll das [mm] $\tau$?)
[/mm]
> Erstes Gleichheitszeichen ist mir klar, zweites aber
> nicht!
Das zweite Gleichheitszeichen gilt nur für [mm] $r\in [/mm] K$, also [mm] $|r-r_0| \leq [/mm] R$.
> Die Integration findet über eine Kugel staht mit Radius
> R. Ich nehme an, dass das Ergebnis unabhängig von R ist
> obwohl da nichts dazu steht.
$ [mm] \bruch{r - r_{0}}{3} [/mm] $ ist offensichtlich unabhängig von $R$.
> Die Kugel hat das Zentrum
> [mm]r_{0}.[/mm]
> Für r' sollte also gelten |r' - [mm]r_{0}| \le[/mm] R
>
> Ich habe folgendes - leider falsch - probiert:
> Substiution von r - r' = r''
> Somit wäre das Integral [mm]\bruch{1}{4*\pi} \integral_{|r - r_{0} - r''| \le R
}^{}{\bruch{r''}{|r''|^{3}} (d^{3}\tau)'}[/mm]
> Weil aber [mm]\integral_{}^{}{\bruch{x}{(x^{2} + y^{2} + z^{2})^{3/2}} dx}[/mm]
> = [mm]-\bruch{1}{(x^{2} + y^{2} + z^{2})^{1/2}}[/mm] kommt da ja
> [mm]-\bruch{1}{r''}[/mm] raus?! Es muss ja aber r'' rauskommen?
Du solltest das ordentlich in einem Koordinatensystem aufschreiben, so dass dort [mm] $r_0 [/mm] = 0$ und beispielsweise die $z$-Achse in Richtung [mm] $r-r_0$ [/mm] zeigt. Mit $d := [mm] |r-r_0| [/mm] = |r|$ gilt also für $d [mm] \leq [/mm] R$ und die $z$ Komponente:
[mm] $[\bruch{1}{4\cdot{}\pi} \integral_{K}^{}{\bruch{r-r'}{|r-r'|^{3}} d^{3}r'}]_z= \bruch{1}{4\cdot{}\pi} \integral_{K}^{}{\bruch{d-z'}{[x'^2+y'^2+(d-z')^2]^\frac{3}{2}} dx'dy'dz'}= \bruch{d}{3} [/mm] $
Die letzte Gleichung ist zu zeigen!
Beachte die Symmetrie für die Berechnung der anderen Komponenten!
>
> Dank&Gruss
LG mathfunnel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:58 Mo 07.02.2011 | Autor: | qsxqsx |
Wieder mal ein Danke an dich...
Übrigens (für den der was dazu sucht):
Es geht hier um die Berechnung des Mittelwertes des Elektrischen Feldes über eine Kugel. In diesem Fall hier ist das Elektrische Feld homogen in der Kugel.
<E> = [mm] -\bruch{1}{4*\pi*\varepsilon_{0}*V}*\integral_{K}^{}{}*\integral_{K}^{}{d^{3}\tau*d^{3}\tau'*Grad*\bruch{\rho(r')}{|r-r'|}} [/mm] = [mm] \bruch{1}{\varepsilon_{0}*V}*\integral_{K}^{}{d^{3}\tau'*\rho(r')}*\bruch{1}{4*\pi}*Grad'*\integral_{K}^{}{\bruch{d^{3}\tau}{|r-r'|}}
[/mm]
Da das Elektrische Feld E(r) für eine Homogene Geladene Kugel mit Volumenladungsdichte [mm] \rho [/mm] und Mittelpunkt [mm] r_{0} [/mm] = 0 als E = [mm] \bruch{\rho*r}{3*\varepsilon_{0}} [/mm] geschrieben werden kann, kann man folgernd dass für einen beliebigen Mittelpunkt E = [mm] \bruch{\rho*(r - r_{0})}{3*\varepsilon_{0}} [/mm] ist.
So kann man es auch einsehen.
Gruss
|
|
|
|