www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integral Fourier
Integral Fourier < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral Fourier: Fourierintegral
Status: (Frage) beantwortet Status 
Datum: 16:13 Sa 27.01.2007
Autor: Spitfire

Aufgabe
Berechnen Sie die Fouriertransformierte von [mm] e^-t^2/2 [/mm]

Hallo,

wie oben beschrieben, soll ich die Fouriertransformierte von e^-t/2 berechnen. als hinweis bekamen wir gesagat das es was mit quadratischer ergänzung zu tun hat.

das fourierintegral ist ja.

int von -unendl bis unendl. über  [mm] e^-t^2/2 [/mm]  * e^-j*omega*t  dt

ich habe jetzt einfach mal die 2 exponenten von den e funktionen zusammengefasst zu [mm] e^{-t^2/2 -j*omega*t} [/mm]
und hatte davon die stammfunktion gebildet. hab dann ja die e funktion die so bleibt, mal die innere ableitung, und die ist ja -t-j*omega.

aber nach einsetzen der grenzen komm ich auf 0.

und laut musterlösung und maple sollte rauskommen [mm] wurzel(2Pi)*e^-omega^2/2 [/mm]

was mach ich falsch, und was hat das mit quad ergänzugn zu tun.

danke für eure hilfe

mfg

Daniel

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Integral Fourier: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Sa 27.01.2007
Autor: Event_Horizon


> ...und
> hatte davon die stammfunktion gebildet. hab dann ja die e
> funktion die so bleibt, mal die innere ableitung, und die
> ist ja -t-j*omega.


Das ist aber Differenzieren, nicht Integrieren!

Das Integrieren ist recht schwer, deshalb gibt es folgenden Trick:

In den Exponenten setzt du noch ein +C ein - die ganze Gleichung, also auch das ganze Integral wird somit mit [mm] e^C [/mm] multipliziert, aber das läßt sich später wieder durch Division rückgängig machen.

Auf jeden Fall bestimmst du das C so, daß du im Exponenten eine bin. Formel stehen hast, und dort dann sowas wie (at+b)² steht.

Diese e-Funktion läßt sich dann viel besser integrieren (Naja, man sucht die Fomel in Tabellen...)





Bezug
                
Bezug
Integral Fourier: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:35 Sa 27.01.2007
Autor: Spitfire

Hallo,

danke für deine Antwort.

Beim dem Zitat das du von mir hattest hatte ich mich wohl verschrieben. ich meinte natrülich * 1/innere ableitung

an tabellen wie z.B. Bronstein. hab ich auch scon gedacht.

aber ich frag mich dann trotzdem wieso mein integrieransatz so nicht funktionier.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]