www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integral + Substitution von ln
Integral + Substitution von ln < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral + Substitution von ln: Integral 4xln(x²+2)dx
Status: (Frage) beantwortet Status 
Datum: 07:40 Do 24.01.2013
Autor: Jack2401

Aufgabe
Bestimmen Sie folgendes Integral durch Rückführung auf Grundinterale! Geben Sie die verwendete Substitution an! (S= Integralzeichen)

[mm] \integral_{}^{}{4xln(x²+2)dx} [/mm]

Als Lösung (die man im Normalfall ja nicht hat) ist fogendes Angegeben:

Substitution z=x²+2
[mm] \integral_{}^{}{2ln(z)dz = 2(zln(z)-z)+c} [/mm]
Rücksubstitution vornehmen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Nachdem ich das Kapitel vom Lehrbuch nun 3 mal durchgelesen habe verstehe ich immer noch nur Bahnhof!!! Und das obwohl mir Mathe noch nie schwer gefallen ist. Kann mir jemand die Lösung dieser Aufgabe erklären?

Vielen Dank vorab

        
Bezug
Integral + Substitution von ln: Antwort
Status: (Antwort) fertig Status 
Datum: 08:03 Do 24.01.2013
Autor: schachuzipus

Hallo Jack2401 und erstmal herzlich [willkommenmr],


> Bestimmen Sie folgendes Integral durch Rückführung auf
> Grundinterale! Geben Sie die verwendete Substitution an!
> (S= Integralzeichen)
>  
> [mm]\integral_{}^{}{4xln(x²+2)dx}[/mm]

Exponenten musst du mit dem Dach ^ links neben der 1 eingeben, sonst werden sie nicht angezeigt:

[mm]x^2+2[/mm] gibst du so ein: x^{2}+2

>  
> Als Lösung (die man im Normalfall ja nicht hat) ist
> fogendes Angegeben:
>  
> Substitution z=x²+2
>  [mm]\integral_{}^{}{2ln(z)dz = 2(zln(z)-z)+c}[/mm]
>  
> Rücksubstitution vornehmen
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Nachdem ich das Kapitel vom Lehrbuch nun 3 mal durchgelesen
> habe verstehe ich immer noch nur Bahnhof!!! Und das obwohl
> mir Mathe noch nie schwer gefallen ist. Kann mir jemand die
> Lösung dieser Aufgabe erklären?

Nun, mit [mm]z=z(x)=x^2+2[/mm] ist doch [mm]z'(x)=\frac{dz}{dx}=2x[/mm], also [mm]dx=\frac{1}{2x} \ dz[/mm]

Ersetzt man das Im Ausgangsintegral, so ergibt sich

[mm]\int{4x\ln(x^2+2) \ dx} \ = \ \int{4x\ln(z) \ \frac{1}{2x} \ dz} \ = \ 2\int{\ln(z) \ dz}[/mm]

Und das Integral [mm]\int{\ln(z) \ dz}[/mm] kannst du mit partieller Integration lösen:

[mm]\int{\ln(z) \ dz}=\int{1\cdot{}\ln(z) \ dz}[/mm]

Setze [mm]u'=1[/mm] und [mm]v=\ln(z)[/mm]

Dann ist [mm]\int{u'(z)v(z) \ dz}=u(z)v(z)-\int{u(z)v'(z) \ dz}[/mm]

So, nun habe ich schon zuviel verraten ...

Rechne es mal durch ...

>  
> Vielen Dank vorab

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]