www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "HochschulPhysik" - Integral
Integral < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:39 So 09.11.2008
Autor: Fuchsschwanz

Hallo!


Ich habe ein Integral
[mm] \integral_{0}^{unendlich}{\wurzel{k+dy/dx} dx} [/mm]

Jemand einen Tipp, wieman soetwas lösen kann?




        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:20 So 09.11.2008
Autor: leduart

Hallo
Wenn du nichts ueber y(x) weisst seh ich nicht wie du das loesen sollst. weisst du was ueber das Ergebnis?
woher kommt das Integral? wieso postest du das in Physik?
Gruss leduart

Bezug
        
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 So 09.11.2008
Autor: Fuchsschwanz

es geht um das Käferproblem..also vier Käfer auf den Ecken eines Quadrates....da habe ich ein Integral dieser Form als Ausdruck der Bogenlänge gegeben und soll die gesamtzurückgelegte Dtrecke berechnen...vllt. hat das Integral auch nix damit zu tun...aber es ist halt direkt darüber angegeben...

Bezug
                
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 So 09.11.2008
Autor: leduart

Hallo
meinst du etwa :
[mm] s-\integral_{a}^{b}{\wurzel{1+y'^2} dx} [/mm] als Bogenlaeng des Graphen der fkt y=f(x)?
dann musst du aber y(x) kennen oder x(t) und y(t) der Kurve
Gruss leduart

Bezug
                        
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:57 So 09.11.2008
Autor: Fuchsschwanz

also ich hab gegeben, dass dr/dp=-r ist (p ist Winkel), daraus sollte man die Bahnkurve bestimmen ich habe für [mm] r(p)=1/\wurzel [/mm]              {2}*e^-p raus, keine Anung ob das richtig ist...

Bezug
                                
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 So 09.11.2008
Autor: Fuchsschwanz

vllt. magst du mal die Lösung der Differentialgleichung nachprüfen?


dr/dp=-r mit der Anfangsbedingung p=0, r=l/ [mm] \wurzel{2} [/mm]

und ich hab raus l/wurzel(2)*e^-p



Bezug
                                        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 So 09.11.2008
Autor: leduart

Hallo
r(p) ist richtig. wenn du kartesische Koordinaten nimmst , x(p),y(p) ist die bogenlaenge auch leicht auszurechnen, sieh dir die formel dafuer an bzw. kapier sie, wenn man parametrisierte kurven hat,
das Ergebnis fuer die bogenlaenge ist 1
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]