www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Integral
Integral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Frage
Status: (Frage) beantwortet Status 
Datum: 22:23 Mo 06.12.2004
Autor: Darker

Hi,
folgenden aufgabe
Bestimmen Sie :
[mm] \integral_{0}^{\pi}{(3x^{2}-sinx) dx} [/mm]
hab erstmal aufgeteilt
bin mir nicht sicher ob das -sinx zusammen bleibt ...
[mm] 3\integral_{0}^{\pi} {(x^{2}) dx}+\integral_{0}^{\pi}{(-sinx) dx} [/mm]


dann stammfunktionen ingesetzt
[mm] 3*\bruch{x^{3}}{3}+cosx [/mm]

dann das intervall
[mm] 3*\bruch{\pi^{3}}{3}+cos\pi-3* \bruch{\0^{3}}{3}+cos0 [/mm]
vereinfachen
[mm] \pi^{3}+cos\pi+1 [/mm]
könnte auch [mm] -cos\pi [/mm] sein siehe oben
stimmt den der weg überhaupt ?

und wenn da steht bestimmen sie .. muss man dann den letzten term noch ausrechnen, weil da kommt dann ne komma zahl raus, was darauf hindeutet das ich warscheinlich irgendwas falsch gemacht hab

cu
Darker




        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 23:02 Mo 06.12.2004
Autor: Astrid

Hallo,

> Bestimmen Sie :
>   [mm]\integral_{0}^{\pi}{(3x^{2}-sinx) dx} [/mm]
>  hab erstmal
> aufgeteilt
> bin mir nicht sicher ob das -sinx zusammen bleibt ...
>  [mm]3\integral_{0}^{\pi} {(x^{2}) dx}+\integral_{0}^{\pi}{(-sin{x})dx}[/mm]

[ok]

Du kannst auch das Vorzeichen aus dem Integral herausziehen, wenn du willst, es gilt also:
[mm]3 \integral_{0}^{\pi} {x^2 dx}+\integral_{0}^{\pi}{-sin(x) dx}= 3 \integral_{0}^{\pi} {x^2 dx}-\integral_{0}^{\pi}{sin(x) dx} [/mm]

>  
>
>
> dann stammfunktionen ingesetzt
>  [mm]3*\bruch{x^{3}}{3}+cosx [/mm]

[ok]

>  
> dann das intervall
>  [mm]3*\bruch{\pi^{3}}{3}+cos\pi-3* \bruch{\0^{3}}{3}+cos0 [/mm]


Du scheinst hier etwas durcheinander gekommen zu sein.
Zuerst einmal ist ja [mm]3*\bruch{x^3}{3}=x^3[/mm]
Wenn du dann die Grenzen 0 und [mm] \pi [/mm] einsetzt, dann ergibt sich:

[mm]\pi^3+cos(\pi)-(0^3+cos(0))= \pi^3+(-1)-(0+1)= \pi^3-2[/mm]

>  
> vereinfachen
>  [mm]\pi^{3}+cos\pi+1 [/mm]
>  könnte auch [mm]-cos\pi[/mm] sein siehe oben
> stimmt den der weg überhaupt ?
>  
> und wenn da steht bestimmen sie .. muss man dann den
> letzten term noch ausrechnen, weil da kommt dann ne komma
> zahl raus, was darauf hindeutet das ich warscheinlich
> irgendwas falsch gemacht hab

[mm] \pi^3 [/mm] brauchst du nicht ausrechnen, das kannst du als Symbol stehen lassen.

Damit es auch formal schön aussieht:

[mm]\integral_{0}^{\pi}{3x^2-sin(x) dx}= \integral_{0}^{\pi}{3x^2 dx}-\integral_{0}^{\pi}{sin(x) dx}= \left[ x^3+cos(x) \right]_{0}^{\pi}= \pi^3+cos(\pi)-(0^3+cos(0))= \pi^3-2[/mm]

Wenn du fragen hast, einfach melden!

Gruß,
Astrid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]