www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Induktionsbeweis Produktformel
Induktionsbeweis Produktformel < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsbeweis Produktformel: Wo ist der Fehler?
Status: (Frage) beantwortet Status 
Datum: 13:49 Di 01.03.2016
Autor: Piba

Aufgabe
Sei a [mm] \not= [/mm] 1 eine reelle Zahl. Zeige durch vollständige Induktion:

[mm] \produkt_{k=0}^{n}(1+a^{2^{k}}) [/mm] = [mm] \bruch{1-a^{2^{n+1}}}{1-a} [/mm]

Hallo zusammen, ich habe folgendermaßen gerechnet habe jedoch im Induktionsanfang eine Unstimmigkeit, denn 1+a [mm] \not= [/mm] 1-a und am Ende im Induktionsschluss, da habe ich im Exponenten zu viel drin. Kann mir da einer bitte weiterhelfen?

IA: [mm] \produkt_{k=0}^{0}(1+a^{2^{k}}) [/mm] = [mm] (1+a^{2^{0}}) [/mm] = 1+a [mm] \not= \bruch{1-a^{2^{0+1}}}{1-a} [/mm] = [mm] \bruch{1-a^{2^{1}}}{1-a} [/mm] = [mm] \bruch{1-a^{2}}{1-a} [/mm] = 1-a
IS: [mm] \produkt_{k=0}^{n}(1+a^{2^{k}}) [/mm] = [mm] \bruch{1-a^{2^{n+1}}}{1-a} \Rightarrow [/mm]
[mm] \produkt_{k=0}^{n+1}(1+a^{2^{k}}) [/mm] = [mm] \produkt_{k=0}^{n}(1+a^{2^{k}}) [/mm] * [mm] (1+a^{2^{k+1}}) \underbrace{=}_{IV} \bruch{1-a^{2^{n+1}}}{1-a} [/mm] * [mm] (1+a^{2^{n+1}}) [/mm] = [mm] \bruch{(1-a^{2^{n+1}})*(1+a^{2^{n+1}})}{1-a} [/mm] = [mm] \bruch{1 + a^{2^{n+1}} - a^{2^{n+1}} - a^{2^{n+2}}}{1-a} [/mm] = [mm] \bruch{1 - a^{2^{2n+2}}}{1-a} [/mm]

        
Bezug
Induktionsbeweis Produktformel: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Di 01.03.2016
Autor: Jule2

Hi!
Fangen wir mal mit dem Induktionsanfang an, da hast du schlicht falsch gerrechnet.
Wie kommst du denn auf  [mm] \bruch{1-a^{2}}{1-a}=1-a?? [/mm] Das ist falsch nutze hier die dritte Binomische Formel dann kommst du auch auf 1+a!!
Auch beim Induktionsschluss hast du dich verrechnet!
Was ist denn [mm] a^{2^{n+1}}*a^{2^{n+1}}?? [/mm]

LG





Bezug
                
Bezug
Induktionsbeweis Produktformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Di 01.03.2016
Autor: Piba


> Hi!
>  Fangen wir mal mit dem Induktionsanfang an, da hast du
> schlicht falsch gerrechnet.
>  Wie kommst du denn auf  [mm]\bruch{1-a^{2}}{1-a}=1-a??[/mm] Das ist
> falsch nutze hier die dritte Binomische Formel dann kommst
> du auch auf 1+a!!

Du hast recht, jetzt wo du es sagst sehe ich es auch. Jetzt habe ich folgendes für den IA:

IA: [mm] \produkt_{k=0}^{0}(1+a^{2^{k}}) [/mm] = [mm] (1+a^{2^{0}}) [/mm] = 1+a = [mm] \bruch{1-a^{2^{0+1}}}{1-a} [/mm] = [mm] \bruch{1-a^{2^{1}}}{1-a} [/mm] = [mm] \bruch{1-a^{2}}{1-a} [/mm] = [mm] \bruch{(1-a)(1+a)}{1-a} [/mm] =1+a

> Auch beim Induktionsschluss hast du dich verrechnet!
>  Was ist denn [mm]a^{2^{n+1}}*a^{2^{n+1}}??[/mm]

Ich würde sagen dann kommen wir doch auf:
... = [mm] \bruch{1 - a^{2^{n+2}}}{1-a} [/mm]
mit den Potenzgesetz wissen wir, das [mm] a^x [/mm] * [mm] a^y [/mm] = [mm] a^{x+y} [/mm] ist, aber der Doppelexponent verwirrt mich, könntest du es mir vielleicht mal erklären wie man da mit den Doppelexponenten vorgeht?


>  
> LG
>  
>
>
>  

Bezug
                        
Bezug
Induktionsbeweis Produktformel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Di 01.03.2016
Autor: DieAcht

Hallo Piba!


> IA: [mm]\produkt_{k=0}^{0}(1+a^{2^{k}})[/mm] = [mm](1+a^{2^{0}})[/mm] = 1+a =
> [mm]\bruch{1-a^{2^{0+1}}}{1-a}[/mm] = [mm]\bruch{1-a^{2^{1}}}{1-a}[/mm] =
> [mm]\bruch{1-a^{2}}{1-a}[/mm] = [mm]\bruch{(1-a)(1+a)}{1-a}[/mm] =1+a

Richtig.

> > Auch beim Induktionsschluss hast du dich verrechnet!
> >  Was ist denn [mm]a^{2^{n+1}}*a^{2^{n+1}}??[/mm]

>  
> Ich würde sagen dann kommen wir doch auf:
> ... = [mm]\bruch{1 - a^{2^{n+2}}}{1-a}[/mm]

Richtig.

> mit den Potenzgesetz
> wissen wir, das [mm]a^x[/mm] * [mm]a^y[/mm] = [mm]a^{x+y}[/mm] ist, aber der
> Doppelexponent verwirrt mich, könntest du es mir
> vielleicht mal erklären wie man da mit den
> Doppelexponenten vorgeht?

Es gilt

      [mm] $a^{2^{n+1}}*a^{2^{n+1}}=a^{2^{n+1}+2^{n+1}}=a^{2*2^{n+1}}=a^{2^{n+2}}$. [/mm]

Alternativ

      [mm] $a^{2^{n+1}}*a^{2^{n+1}}=\left(a^{2^{n+1}}\right)^2=a^{2*2^{n+1}}=a^{2^{n+2}}$. [/mm]


Gruß
DieAcht

Bezug
                                
Bezug
Induktionsbeweis Produktformel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:28 Di 01.03.2016
Autor: Piba

Vielen Dank an alle für die Hilfe, jetzt habe ich es verstanden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]