www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Ideal Kreuzprodukt
Ideal Kreuzprodukt < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ideal Kreuzprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 Sa 07.07.2012
Autor: diab91

Aufgabe
Seien R,S kommutative Ringe. Beweisen Sie, dass die Ideale des kartesischen Produktes genau die Produkte IxJ sind, wobei I ein Ideal von R und J ein Ideal von S ist.

Guten Abend,

ich habe folgendes versucht:

Sei K ein beliebiges Ideal von RxS. Dann gilt:
1. (0,0) [mm] \in [/mm] K
2. [mm] \forall [/mm] (x,y),(x',y') [mm] \in [/mm] K: (x+x',y+y') [mm] \in [/mm] K
3. Sei (x,y) [mm] \in [/mm] K und (m,n) [mm] \in [/mm] RxS: (x*m,y*n) [mm] \in [/mm] K.

Da K [mm] \subseteq [/mm] RxS gelten für die erste Komponente von K die Axiome eines Ideals in R und in der zweiten die Axiome eines Ideals in S.

Damit wäre die Aufgabe doch bereits erledigt oder täusche ich mich da?

Schönen Gruß,
Diab91

        
Bezug
Ideal Kreuzprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 17:55 Sa 07.07.2012
Autor: hippias

Du hast sozusagen nur die eine Inklusion bewiesen.

Bezug
                
Bezug
Ideal Kreuzprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:59 Sa 07.07.2012
Autor: diab91

Moin,

Ok, ja. Aber wenn ich mir ein Ideal I von R und ein Ideal J von S wähle und das Kreuzprodukt davon betrachte, so gelten doch ebenfalls direkt die Ideal Axiome in RxS. Oder übersehe ich da was?

Schönen Gruß,
Diab91

Bezug
                        
Bezug
Ideal Kreuzprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 Sa 07.07.2012
Autor: fred97


> Moin,
>  
> Ok, ja. Aber wenn ich mir ein Ideal I von R und ein Ideal J
> von S wähle und das Kreuzprodukt davon betrachte, so
> gelten doch ebenfalls direkt die Ideal Axiome in RxS. Oder
> übersehe ich da was?

Sicherlich sollst auch das sauber niederschreiben

FRED

>  
> Schönen Gruß,
> Diab91


Bezug
        
Bezug
Ideal Kreuzprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Sa 07.07.2012
Autor: fred97


> Seien R,S kommutative Ringe. Beweisen Sie, dass die Ideale
> des kartesischen Produktes genau die Produkte IxJ sind,
> wobei I ein Ideal von R und J ein Ideal von S ist.
>  Guten Abend,
>  
> ich habe folgendes versucht:
>  
> Sei K ein beliebiges Ideal von RxS. Dann gilt:
> 1. (0,0) [mm]\in[/mm] K
>  2. [mm]\forall[/mm] (x,y),(x',y') [mm]\in[/mm] K: (x+x',y+y') [mm]\in[/mm] K
>  3. Sei (x,y) [mm]\in[/mm] K und (m,n) [mm]\in[/mm] RxS: (x*m,y*n) [mm]\in[/mm] K.
>  
> Da K [mm]\subseteq[/mm] RxS gelten für die erste Komponente von K
> die Axiome eines Ideals in R und in der zweiten die Axiome
> eines Ideals in S.


Damit würde ich mich nicht begnügen !

Setze I= [mm] \{x \in R: \exists y \in S :(x,y) \in K \} [/mm]

und J= [mm] \{y \in S: \exists x \in R :(x,y) \in K \} [/mm]

und zeige, dass I ein Ideal in R und J ein Ideal in S ist


>  
> Damit wäre die Aufgabe doch bereits erledigt oder täusche
> ich mich da?

Und die Umkehrung ?

FRED

>  
> Schönen Gruß,
>  Diab91


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]