www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - \IR^{2} mit drei l.u Vektoren
\IR^{2} mit drei l.u Vektoren < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

\IR^{2} mit drei l.u Vektoren: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:27 Mo 15.11.2010
Autor: i-man

Aufgabe
Es gibt in [mm] \IR^{2} [/mm] drei linear unabhängige Vektoren

Ja oder Nein??

ja also eigentlich nicht, da [mm] \IR^{2} [/mm] von max. 2 linear unabhängige Vektoren aufegespannt werden kann.

Jedoch wenn man sich das mal in einer skizze vorstellt, ist es doch möglich, dass es 3 Vektoren gibt, die linear unabhängig sind

z.b.:  ( 1 , [mm] \bruch{7}{2} [/mm] )     ( [mm] \bruch{3}{2} [/mm] , 2 )       ( 3 , 1 )

Es wäre nett wenn mir jmd weiter helfen könnte

Danke
I-Man

        
Bezug
\IR^{2} mit drei l.u Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 23:25 Mo 15.11.2010
Autor: DesterX

Hallo i-man.

Wie kommst du darauf, dass die drei lin. unabh sind?
Drei Vektoren aus dem [mm] $\IR^2$ [/mm] sind stets linear abhängig.
Das gilt selbstverständlich auch für dein Beispiel. Du kannst zwar zeigen, dass sie paarweise unabhängig sind, allerdings gibt es immer ein $r,s [mm] \in \IR$, [/mm] so dass zum Beispiel:

$r [mm] \vektor{1 \\ 7/2} [/mm] + s [mm] \vektor{3/2 \\ 2} [/mm] = [mm] \vektor{3 \\ 1}$ [/mm]

gilt. Anschaulich sind sie also lin. abh., da du jeden dieser Vektoren durch die jeweils anderen Beiden erzeugen kannst, indem du sie mittels r und s verlängerst/verkürzt und in deiner Skizze entsprechend verschiebst.
Gruß, Dester

Bezug
                
Bezug
\IR^{2} mit drei l.u Vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:33 Di 16.11.2010
Autor: i-man

ach ja natürlich...

vielen dank nochmal...

I-man

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]