www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Navigation
 Startseite...
 Suchen
 Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Hyperbel
Hyperbel < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hyperbel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:05 Fr 23.10.2020
Autor: Mathemurmel

Aufgabe
f(x) = 1/x  ist eine Hyperbel.

Haben die Funktionen

f(x) = [mm] 1/x^2 [/mm]  
f(x) = [mm] 1/x^3 [/mm]  
f(x) = [mm] 1/x^4 [/mm]  
...
auch einen speziellen Namen oder fallen sie nur unter den Begriff "gebrochen-rationale Funktionen"?

        
Bezug
Hyperbel: Antwort
Status: (Antwort) fertig Status 
Datum: 07:39 Fr 23.10.2020
Autor: statler

Hi!

Das sind gebrochen-rationale Funktionen. Es gibt inzwischen aber zu meinem grenzenlosen Entsetzen Lehrer, die diese Funktionen ebenfalls Hyperbeln nennen.

Gruß aus HH
Dieter

Bezug
                
Bezug
Hyperbel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:55 So 25.10.2020
Autor: Al-Chwarizmi

Lehrer, die diese Funktionen ebenfalls Hyperbeln nennen

Falls sie die Funktionen  "Hyperbeln" nennen, dann ist das ein Kapitalverbrechen.

Falls sie die Graphen solcher Funktionen als Hyperbeln bezeichnen, dann sollten sie wenigstens von so etwas wie "Hyperbeln höherer Ordnung" sprechen, wie dies zum Teil in älteren Büchern noch gebräuchlich war. Befürworten kann ich aber eine solche Begriffsverdrehung nicht wirklich.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]