www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Hohe Potenzen in \IC
Hohe Potenzen in \IC < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hohe Potenzen in \IC: in Polarform
Status: (Frage) beantwortet Status 
Datum: 14:11 Sa 12.11.2005
Autor: Reaper

Hallo....
geg.: Man berechne klassisch und in Polarform:

z= ( (1 +  [mm] \wurzel{3}*i) [/mm] / (2+2i) [mm] )^{3} [/mm]

klassisch ists kein Problem (hoffentlich) ...da kommt 1/2 + i/2 = z heraus

in Polarform bin ich das Ganze so angegangen:

1 +  [mm] \wurzel{3}*i [/mm] in Polarkoordinaten :

|z | =  [mm] \wurzel{1² + \wurzel{3} ²} [/mm]
|z| = 2
a = |z| * cos ( [mm] \delta) [/mm]
1 = 2 * cos ( [mm] \delta) [/mm]

[mm] \delta [/mm] = arccos (1/2) = 60 Grad =  [mm] \pi [/mm] / 3
So...und genau um die Grad gehts....wie kann ich ohne Taschenrechner
wissen dass arccos (1/2) = 60 Grad =  [mm] \pi [/mm] / 3 lautet.....

Bei 2 + 2i:

|z| =  [mm] \wurzel{8} [/mm]
2 = 2 * cos ( [mm] \delta) [/mm]
[mm] \delta [/mm] = arccos (2/2) = 0

...wie kann ich die Grad speziell beim ersten Term 1 +  [mm] \wurzel{3}*i [/mm] ohne
TI92 wissen?

So nun habe ich also 2 komplexe Zahlen in Polarform dragestellt:

[mm] z_{1} [/mm] = 2(cos  [mm] \pi/3 [/mm] + i*sin  [mm] \pi/3 [/mm] )
[mm] z_{2} [/mm] =  [mm] \wurzel{8} [/mm] (cos  0 + i*sin  0 )


2(cos  [mm] \pi/3 [/mm] + i*sin  [mm] \pi/3 )^{3} [/mm] = 2(cos  [mm] \pi/3 [/mm] + i*sin*3*  [mm] \pi/3 [/mm] )
[mm] \wurzel{8} [/mm] (cos  0 + i*sin  0 ) ^{3} = [mm] \wurzel{8}(cos [/mm]  0 + i*3*sin  0 ) = [mm] \wurzel{8} [/mm] = [mm] z_{2} [/mm]

[mm] z_{1} [/mm] = 2(cos  [mm] \pi/3 [/mm] + i*sin*3*  [mm] \pi/3 [/mm] ) =  2(cos  [mm] \pi/3 [/mm] + i*sin*  [mm] \pi [/mm] ) =  
2(cos  [mm] \pi/3) [/mm]

Also 2(cos  [mm] \pi/3)/\wurzel{8} [/mm] .....und was fang ich jetzt mit dem Term an
um eine anständige komplexe Zahl herauszubekommen?

mfg,
Hannes


        
Bezug
Hohe Potenzen in \IC: Antwort
Status: (Antwort) fertig Status 
Datum: 15:10 Sa 12.11.2005
Autor: Leopold_Gast

So...und genau um die Grad gehts....wie kann ich ohne Taschenrechner
wissen dass arccos (1/2) = 60 Grad =  [mm]\pi[/mm] / 3 lautet.....


Es gibt Dinge, die sollte man wissen. Die Frage ist so ähnlich wie

"Wie kann ich ohne Taschenrechner wissen, daß die Wurzel von 81 gerade 9 ist?"

Und hier geht es um Elementargeometrie. Tip: Halbiere ein gleichseitiges Dreieck mit Seitenlänge 1 und verwende die Definiton von Sinus/Cosinus im rechtwinkligen Dreieck.

Bezug
                
Bezug
Hohe Potenzen in \IC: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:35 Mo 14.11.2005
Autor: Reaper

Hallo....ach ja ich bin draufgekommen dass die komplexen Zahlen gar nicht stimmen...richtig ist:

[mm] z_{1} [/mm] = 2* (cos  [mm] \pi/3 [/mm] + i sin  [mm] \pi/3) [/mm]
[mm] z_{2} [/mm] =  [mm] \wurzel{8}* [/mm] (cos  [mm] \pi/4 [/mm] + i sin  [mm] \pi/4) [/mm]

So und was mach ich jetzt muss ich:
[mm] z_{1} [/mm] =  (2* (cos  [mm] \pi/3 [/mm] + i sin  [mm] \pi/3))^{3} [/mm] = 8 * cos  [mm] \pi/3 [/mm]
[mm] z_{2} [/mm] =  [mm] (\wurzel{8}* [/mm] (cos  [mm] \pi/4 [/mm] + i sin  [mm] \pi/4))^{3} [/mm] =  
[mm] \wurzel{8}^{3}*(cos \pi/4 [/mm] + i sin 3* [mm] \pi/4) [/mm]

So und wie rechne ich jetzt [mm] z_{1} [/mm] / [mm] z_{2} [/mm] ?

mfg,
Hannes


Bezug
                        
Bezug
Hohe Potenzen in \IC: Moivre-Formel
Status: (Antwort) fertig Status 
Datum: 09:10 Mo 14.11.2005
Autor: Loddar

Guten Morgen Hannes!


> [mm]z_{1}[/mm] = 2* (cos  [mm]\pi/3[/mm] + i sin  [mm]\pi/3)[/mm]
> [mm]z_{2}[/mm] =  [mm]\wurzel{8}*[/mm] (cos  [mm]\pi/4[/mm] + i sin  [mm]\pi/4)[/mm]

[ok]


> So und was mach ich jetzt muss ich:
> [mm]z_{1}[/mm] =  (2* (cos  [mm]\pi/3[/mm] + i sin  [mm]\pi/3))^{3}[/mm] = 8 * cos  [mm]\pi/3[/mm]

[notok] Hier fehlt doch noch was ...

[mm] $z_1^3 [/mm] \ = \ [mm] 2^3 [/mm] * [mm] \left[\cos\left(\bruch{\pi}{3}*3\right) + i*\sin\left(\bruch{\pi}{3}*3\right)\right] [/mm] \ = \ 8 * [mm] \left[\cos\left(\pi\right) + i*\sin\left(\pi\right)\right]$ [/mm]


> [mm]z_{2}[/mm] =  [mm](\wurzel{8}*[/mm] (cos  [mm]\pi/4[/mm] + i sin  [mm]\pi/4))^{3}[/mm] =  [mm]\wurzel{8}^{3}*(cos \pi/4[/mm] + i sin 3* [mm]\pi/4)[/mm]

[notok] Fast richtig!

Auch beim [mm] $\cos$ [/mm] muss es natürlich [mm] $\bruch{\red{3}\pi}{4}$ [/mm] heißen. Für [mm] $\wurzel{8}^3$ [/mm] kann man auch schreiben [mm] $16*\wurzel{2}$ [/mm] .

Und es handelt sich auch um [mm] $z_2^{\red{3}}$ [/mm] ...


  

> So und wie rechne ich jetzt [mm]z_{1}[/mm] / [mm]z_{2}[/mm] ?

Hier verwenden wir ebenfalls die Moivre-Formel:

[mm] $\bruch{z_1}{z_2} [/mm] \ = \ [mm] \bruch{r_1 * \left[\cos\left(\varphi_1\right) + i*\sin\left(\varphi_1\right)\right]}{r_2 * \left[\cos\left(\varphi_2\right) + i*\sin\left(\varphi_2\right)\right]} [/mm] \ = \ [mm] \bruch{r_1}{r_2} [/mm] * [mm] \left[\cos\left(\varphi_1-\varphi_2\right) + i*\sin\left(\varphi_1-\varphi_2\right)\right]$ [/mm]


[guckstduhier]  .  .  .  .   []Rechnen mit komplexen Zahlen


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]